
1

Distributed Resource Provisioning for Containers Using

Machine Learning and Live Migration

Alejandro Gonzalez Araya

MsCpE Thesis Defense

UNIVERSITY OF PUERTO RICO
MAYAGÜEZ CAMPUS

2020

December 1, 2020

2

Introduction

 Cloud computing uses pools of virtual machines to provide shared

computing resources.

 Provisioning and management of these resources are usually done

using statistical algorithms to help decide how to better utilize

available compute power;

 This is performed mostly by using live migration of virtual machines.

3

Typical Cloud Infrastructure Scenario. Virtual Machines are live migrated to

improve overall resource efficiency

4

Modern Cloud Infrastructure scenario. Containers and Virtual Machines share

physical infrastructure allowing for a more robust environment.

5

Introduction

 Efficient resource management is crucial for mission critical applications

 Adoption of virtualization in data centers has introduced abstraction to mission critical
systems

 The resource usage policy for the virtualization platform being used is crucial in a
modern datacenter environment

 In the container case, resource usage decisions are typically performed at container
start

 Limiting its execution to a single assigned node and the amount of resource efficiency
that can be achieved at a particular time.

6

Motivation

 Today's Cloud services are heterogeneous (PaaS, IaaS, Serveless)

 Thanks to the diversity of computational cloud resourceful the use of containers
in Cloud environments have gained traction.

● Containers provide a computationally cheaper solution for most task

 Most cloud systems are designed for virtual machines (VM)

 Mechanisms to handle containers and Vms on a heterogeneous cloud
environment needs to be addressed.

● No container live migration support for resource provisioning

 Using VM live migration techniques for containers is not something used for
resource provisioning

7

Motivation

 Compute power is not always used to its potential.

 We want to use modern technologies to improve system resource utilization to
improve the performance of running workloads.

 Current software stacks for container management do not use live migration for
performance tuning.

 Our work consisted on developing a platform that improves system and
workload performance using container live migration.

 Our works covers the research of container migration techniques, real-time
system monitoring and resource provisioning policies.

8

Containers

 Operating system feature in which the kernel
allows the existence of multiple isolated
user-space instances

 Containers are a lighter-weight, more agile
way of handling virtualization compared to
virtual machines.

 Containers packages together everything
needed to run a small piece of software as a
system process by sharing the host’s kernel.

 Contains provide a level of flexibility to
handle many software environments and
tasks

9

Live migration and Application Checkpointing

 Application checkpointing consists of saving a snapshot of the
application's state, so that it can restart from that point in case of failure.

 CRIU is a software tool for the Linux operating system that allows to
freeze a running application (or part of it) and checkpoint it as a
collection of files on disk.

 These files can then be used to restore the application and run it exactly
as it was during the time of the freeze.

 The use of a software tool like CRIU for application checkpointing
together with a container manager as Docker, allows a developer to
migrate a running container to another host

10

Resource Provisioning

 Resource provisioning describes the process of assigning appropriate
resources to computing workloads.

 These tasks require the pairing of the best compute resource to a workload
based on the application requirements.

 This is a complex job that needs to be optimized for the best use of the
available resources.

 We monitor in real-time the system resource utilization metrics to determine
system bottlenecks.

 We use container live-migration to improve system performance by evaluating
the available resources on the infrastructure to better accommodate a container.

11

Machine Learning

 Machine learning algorithms build a mathematical model of sample
data, in order to make predictions or decisions without being
explicitly programmed to perform the task.

 We used machine learning to analyze system resource utilization, it
allows us to select the most important features of a given workload
to focus our resource provisioning policies on those system metrics.

 With machine learning we can forecast the performance of a
container’s workload on another host to improve our container live
migration policy.

12

Herd: Container Resource Provisioning System

 Our live migration toolset defines compute nodes and a Control node that act together
to manage, run and migrate containers.

 The Compute nodes hosts containers and are responsible for orchestrating the
container live migration tasks, well as receiving communication from the Control node.
● The Compute node will send status and monitoring information to the Control node.

 The Control node is responsible for monitoring the containers and compute node’s
performance.
● Processes realtime monitoring information to determine the ideal container

placement configuration, based on resource metrics and migration policy.
 The control node sends container migration commands to the compute nodes.

13

Herd System Architecture

14

Container Live Migration

15

Container Internals

 Linux kernel feature to
provide process isolation

 Namespaces for process
isolation

 Control groups
(CGROUP) for resource
isolation

 Base image holds
container’s filesystem

16

Application Checkpointing

 Checkpoint and Restore in Userspace (CRIU) is a software tool that
handles the required task to checkpoint and restore an application.

 A checkpoint dump contains a process file descriptor information,
memory maps and other stateful objects such as TCP sockets.

 File locks, devices, and task from other users are among the things
that cannot be checkpointed by CRIU.

 By transferring a checkpoint to another machine, migration can be
achieved.

 Docker provides, as an experimental feature, the ability to checkpoint
and restore a container.

 Docker does not feature container live migration.

17

Container Live Migration

18

Container Live Migration

19

Container Live Migration

...

20

Container Live Migration sequence

 Checkpoint and restore (C/R) tasks for container migration
● Launch Container A in Node 1
● Checkpoint Container A
● Create Container B in Node 2
● Transfer Checkpoint A to Node 2
● Restore Checkpoint A on Container B
● Remove Container A in Node 1

21

Herd Compute

22

Compute Nodes

 Compute Daemon – Multi-threaded
 Container Creation
 Container Migration
 Container Checkpoint
 Container Restore
 Container Transfer
 Asynchronous Messaging
 Messaging Callbacks
 Remote Container Info
 Extended Metric Streaming

 Message Broker

 Docker

 CRIU

 PCP - Monitoring

 PCP Daemon

 PCP Web API

 Local Storage

23

System Messaging

 MQTT Bidirectional publish-subscribe

● Also used for Inter process
communication

● Provides Quality of service (QoS)
configuration

● Acknowledgments and Wills

● Message queuing

 Mosquitto broker

● Automatic re-connection

24

Live migration sequence

 Optimizing migration sequence

 Parallelize tasks by deploying target container
while source container checkpoints

 CRIU operations are serial, our asynchronous
sequence could interfere C/R operations

 We manage CRIU resources by synchronizing
the the C/R tasks for parallel container
migrations.

Migration stress testing results after concurrency management

25

Container Networking

 MACVLAN network adapter

 Driver available for Docker

 Containers have own mac address, direct connection to network
● Implemented automatic network-bound container live migration sequence to

Compute Daemon

 Network communication reestablishment after live migration

 Network communication between containers using host network

 Ability to handle and live migrate multiple network-bound containers

● Compared to other implementations that only handle 1 container per host

26

FileSystem Migration

 Live migration does not transfer container filesystem

 No FS migration is quick but prone to failure as only RAM is transferred

 The Compute Daemon is capable of migration entire container FS

 This operation is computationally heavy and takes time

 Containers work using an overlay filesystem (FS)

● Only the changes to the base image are stored

● All compute hosts have the base images

27

FileSystem Optimizations

 All compute hosts have the base OverlayFS image

 By only moving the difference layer quick FS live migration is possible

 Our implementation allows Herd to support more types of workload

 Improves C/R compatibility, achieves faster FS live migration

 No other container orchestration software uses this optimization

Filesystem migration duration comparison

28

Migration Rollback

● Herd Compute can rollback a failed migration by using the same
checkpoint/restore features used for migration

● Herd control handles errors in three main ways:
● if checkpoint fails: rollback target container and keep source container

running
● if remote restore fails: rollback target container restore a source container

from checkpoint
● if local restore fails: rollback target container and restart source

container

● In this case the container is restarted. A restarted container looses its context
and can be consider a failed migration.

29

Compute Integration

30

System Monitoring

31

System Monitoring

 Developed a customizable and lightweight resource
monitoring software

 Provides resource utilization metrics of running containers.
 Provides resource utilization metrics of compute nodes.
 Track container migrations.
 Handle the task to gather and centralize live migrating

container resource utilization metrics.


32

Performance Co-Pilot (PCP)

 Lightweight, extensible monitoring software
 Gathers most of the resource data from Linux's proc

filesystem
 Provides real time resource utilization data
 Distributed REST API for remote monitoring
 Can monitor independent CGROUPs

33

Herd Monitor

 Monitoring Daemon – Multi-threaded
 Host Monitoring
 Container Monitoring
 Container Migration Tracker
 Metrics processor
 Asynchronous Messaging
 Messaging Callbacks
 Container Health check
 Host-independent Container log

34

Monitor Daemon

 Real-time data streaming to Control Daemon
 Extended metric processing from Compute Daemon

 PCP error handling
 Host and Container monitoring
 Container live migration tracking
 Container standard output logging
 Lambda architecture for online and offline data processing

 Fully Concurrent and customizable

35

Compute and Monitor Integration

36

Herd Monitor Overhead Analysis

 Evaluated Herd Monitor overhead over Control Node

 Improved performance by parallelizing threads

 Resource reuse and concurrency management

 Different sampling rates for each type of monitoring

37

Herd Monitor Overhead Analysis

 Control Node CPU utilization under different Herd Monitor Sampling
Configurations

38

Herd Monitor Overhead Analysis

 Control Node CPU utilization while monitoring many containers

● 5 second sampling rate, 2 second container tracking rate

39

Herd Monitor Overhead Analysis

Compute Node (top), Control Node (bottom) CPU utilization under 0-3600 monitored containers

40

Resource Provisioning

41

Workload characterization

 Workload characterization by small controlled microbenchmarking

 Policy testing by large controlled workloads

 Randomly generated workload scenarios

 On-the-fly system reconfiguration

 Deploy multiple VM compute hosts with different hardware
configurations

 Gather data and analyze each run

 Overlap “staircase” scenarios

42

Performance Validation

 Sysbench synthetic CPU benchmark
 Prime number verification
 Total operations per runtime
 Reports by internal the instant

operations during runtime
 Limit execution time to benchmark

the total operations and instant
operations

43

Performance Validation Experiment

 Synthetic benchmarks
 Dependent variable for our experiment
 Used to correlate (if any) the monitored resource utilization

metrics vs the operations per seconds from the benchmark
 Used to have a final total operations score to validate overall

performance gains from migration
 Instant report of op/s used to validate performance changes

44

CPU Workload Characterization

2-core host
saturation

Migration to 4-
core host
performance
gain

 2-core and 4-core
hosts

 All containers CPU
utlil vs time

45

Performance Validation

Single Container CPU Util (top) Perforamnce Metrics OP/s (bottom) for a vs Time

 2-core hosts
 1-thread containers
 Single Container

metric for all hosts
vs time

 Colors: hosts

46

Herd Control

 Control Daemon – Multi-threaded
● Migration Controller
● Message Queue
● DataFrame processor

 Real-time data stream
processing from Monitor Daemon

 Sends migrations commands to
Compute Daemons

 Live migration error handling

47

CPU workload container placement policy

Container live migration policy based on CPU workload characterization

 Host and Container CPU Utilization

 Host container count

 Reward threshold values

Greedy Policy performance compared to ideal case
Greedy Policy performance

48

CPU multi threaded workload container placement policy

Container live migration policy based on CPU multi threaded workload characterization

 Host and Container CPU Utilization

 Host container count

 Container PID Count

 Reward threshold values

Improved Greedy Policy performance

49

TPC-C Benchmark

 TPC Benchmark C is an on-line transaction processing (OLTP)
benchmark.

 Multiple transaction types, more complex database and overall
execution structure.

 Mix of five concurrent transactions of different types and complexity
either executed on-line or queued for deferred execution.

 Measured in transactions per minute (tpmC).

 Database is comprised of nine types of tables with a wide range of
record and population sizes.

50

Full System Integration

51

TPC-C Workload Characterization

Memory usage on compute node on staircase scenario Disk ops on compute node on staircase scenario

CPU time on compute node on staircase scenario
Network throughput on compute node on staircase scenario

52

Machine Learning

 Gradient boosting is a machine
learning technique for regression
problems.

 Used for estimating relationships
between an outcome variable
and features.

 Gradient boosting works by
producing a group of weak
prediction models that can be
used together to form a strong
prediction model.

Bagging (independent models) & Boosting (sequential models)

53

XGBoost

 Feature selection

 Performance forecasting

 Provides relatively accurate forecasting for its short training time.

 XGboost provides multiple approximation algorithms with various degrees of
accuracy and training speed.

 We found that its GPU and CPU performance is similar for the hists tree
construction algorithm that is an optimized approximate greedy algorithm.

54

Forecasting

 Use instance performance metrics (ops) to train model to forecast container
performance

 By utilizing resource metrics, we can forecast the performance of a container
when running on another host.

 Our dependent variable is the container ops, our independent variable are
the resource metrics of the container itself and its host.

 We forecast a container’s performance by using the resource metrics of a
container and those of a target host.

 We predict the operations per second of a container on said target host.

 Re-sample data to handle the asynchronic nature of Herd Monitor.

55

Forecasting

Forecast of a Memory Workload’s performance over time for a single container vs actual operations per second

Feature importance plot for a OLTP workload

56

OLTP Policy

Container live migration policy based on TPC-C workload characterization

 Host disk ops, Container disk ops

 Host Disk activity %

 Host container count

 Reward threshold values

OLTP Server container performance gains due to live migration

57

OLTP Policy

Find container with the highest disk ops and set as candidate, migrate the
candidate container to the compute host with minimum disk ops if:

 • Candidate container has enough resource metric samples.

 • Compute hosts with the minimum disk ops compared to the compute
host with maximum disk ops have reached the disk ops reward threshold.

 • Compute host with the highest disk activity has reached the disk
active threshold.

 • Compute hosts with the minimum disk activity compared to the
compute host with maximum disk activity have reached the disk activity
reward threshold.

 • Candidate container has reached the disk ops baseline threshold.

 • Compute host with the minimum disk ops is not the same as the
candidate container’s current compute host.

If those conditions are not met, re-evaluate the system and search for
new candidate containers, if no new candidates are found evaluate the
system with the CPU Greedy Policy for Multi-thread Containers.

58

OLTP Policy for TPC-C

CPU time on compute node on TPCC workload with OLTP policy

Disk ops on compute node on TPCC workload with OLTP policy

Disk ops on TPCC server container with OLTP policy

49.05 vs 110.17 tpM, 51.51 vs 112.01 tpM

59

Conclusion

 Developed an optimized container live migration toolset that can quickly
migrate network-bound containers with filesystem support.

 Designed and developed a lightweight resource monitoring tool that
supports live-migrating containers.

 Compared the performance of different live migration techniques and
developed our own optimized techniques.

 Developed a resource provision toolset that implements different container
placement policies.

 Developed a migration rollback scheme for and fault tolerance and error
handling.

60

Conclusion

Developed a methodology to process system and container resource
information for machine learning purposes.

 Designed a machine learning model for container resource provisioning
and forecasting.

 Designed and compared different container provisioning algorithms.

A. Gonzalez, E. Arzuaga “HerdMonitor: Monitoring Live Migrating Containers in Cloud
Environments” 2020 IEEE International Conference on Big Data (Big Data), 2020

61

Future Work

 Continue evaluation different migration policies.

 Perform more system optimizations and handle support for other real-time
streaming platforms and container orchestration software.

 Continue testing our system for other uses cases and platforms, such as IoT
systems.

 Finishing porting our toolset to handle ARM computer architectures and
testing for other computer architectures such as RISC-V.

 Filesystem optimization can potentially open another area of research to
handle better support for container live migration.

 We plan on publishing our toolset components and large monitoring dataset
(1.2GB) as an open source project.

62

Q/A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

