

Distributed Resource Provisioning for Containers Using

Machine Learning and Live Migration

By:

Alejandro González Araya

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

UNIVERSITY OF PUERTO RICO

MAYAGÜEZ CAMPUS

2020

Approved by:

Emmanuel Arzuaga Cruz, Ph.D. Date

President, Graduate Committee

Manuel Rodríguez Martínez, Ph.D. Date

Member, Graduate Committee

Wilson Rivera Gallego, Ph.D. Date

Member, Graduate Committee

Iván J. Baigés Valentín, Ph.D. Date

Representative, Office of Graduate Studies

Dr. Irvin J. Balaguer Álvarez, Ph.D. Date

Chair, Department of Electrical and Computer Engineering

 ii

ABSTRACT

Cloud computing uses pools of virtual machines to provide shared computing resources.

Provisioning and management of these resources are usually done using statistical

algorithms to help decide how to better utilize available compute power. Recently, this has

been performed mostly by using live migration of virtual machines. Nowadays containers

provide the flexibility to handle many software environments and tasks in a lighter-weight

virtualization scheme, providing a more agile alternative to virtual machines for certain

applications. Application checkpointing coupled with a container manager allows the live

migration of a container.

In this thesis, we use container live-migration and real-time monitoring to develop a cloud

resource provisioning platform that enables an improvement in usage and execution of

containers. As a result, the available resources can be tuned and distributed in a more

efficient manner, providing a better use of cloud. This research explores the use of

container live migration techniques to improve cloud resource provisioning. We present

the design and development of our container live-migration, monitoring and provisioning

toolset as well as a performance evaluation and characterization.

RESUMEN

La computación en la nube utiliza grupos de máquinas virtuales para proporcionar recursos

informáticos compartidos. El aprovisionamiento y la gestión de estos recursos se realizan

generalmente mediante algoritmos estadísticos para ayudar a decidir cómo utilizar los

recursos de cómputo disponibles de una mejor manera. Recientemente, esto se ha realizado

principalmente mediante la migración en vivo de máquinas virtuales. Hoy en día, los

contenedores brindan la flexibilidad para manejar muchos entornos de software y tareas en

un esquema de virtualización más liviano, proporcionando una alternativa más ágil a las

máquinas virtuales para ciertas aplicaciones. El guardar el estado de una aplicación junto

con un administrador de contenedores permite la migración en vivo de un contenedor.

En este trabajo, utilizamos la migración en vivo de contenedores y el monitoreo en tiempo

real para desarrollar una plataforma de aprovisionamiento de recursos en la nube que

permite una mejora en el uso y ejecución de los contenedores. Como resultado, los recursos

disponibles se pueden ajustar y distribuir de una manera más eficiente; proporcionando un

mejor uso de la nube. Esta investigación explora el uso de técnicas de migración en vivo

de contenedores para mejorar el aprovisionamiento de recursos en la nube. Presentamos el

diseño y desarrollo de nuestro conjunto de herramientas de migración en vivo, monitoreo

y aprovisionamiento de contenedores, así como una evaluación y caracterización del

desempeño.

 iv

“If you wish to make an apple pie from scratch, you must first invent the universe.”

― Carl Sagan, Cosmos

 v

ACKNOWLEDGEMENTS

I would like to thank my colleges at the Laboratory for Applied Remote Sensing,

Imaging and Photonics (LARSIP) for their support and help. I’m grateful for the

opportunity my professors have given me and thank my family for their unconditional

support. Thanks, the Office of Naval Research for supporting this research.

 vi

TABLE OF CONTENTS

1 INTRODUCTION ... 1

1.1 CONTAINERS .. 2
1.2 LIVE MIGRATION AND APPLICATION CHECKPOINTING ... 2
1.3 RESOURCE PROVISIONING ... 3
1.4 MACHINE LEARNING ... 3
1.5 PROBLEM STATEMENT ... 4
1.6 CONTAINER LIVE MIGRATION SYSTEM .. 5

2 LITERATURE REVIEW ... 7

3 CONTAINER LIVE MIGRATION ... 10

3.1 CONTAINERS .. 10
3.2 APPLICATION CHECKPOINTING AND LIVE MIGRATION .. 10
3.3 HERD COMPUTE OVERVIEW .. 13

3.3.1 Compute Daemon .. 13
3.3.2 Container Migration .. 13
3.3.3 Container output logging support for migrations .. 13
3.3.4 Container Networking ... 13
3.3.5 Container Filesytem .. 14
3.3.6 Healthcheck ... 14
3.3.7 Herd Compute architecture ... 14
3.3.8 System Messaging .. 16

3.4 OPTIMIZING LIVE MIGRATION .. 17
3.4.1 Concurrency management and Stress testing .. 19

3.5 CONTAINER NETWORKING ... 20
3.5.1 Introduction ... 20
3.5.2 MACVLAN Adapter ... 22

3.6 FILESYSTEM MIGRATION .. 26
3.6.1 Improving difference layer container filesystem migration scheme 28

3.7 MIGRATION ROLLBACK .. 31

4 SYSTEM MONITORING .. 33

4.1 INTRODUCTION .. 33
4.1.1 Performance Co-pilot .. 34

4.2 HERDMONITOR OVERVIEW .. 38
4.2.1 Monitoring Daemon .. 38
4.2.2 Configurable Options .. 38
4.2.3 Metric Processing .. 39
4.2.4 Data Output ... 39
4.2.5 Optional Metrics .. 39
4.2.6 Herd Monitor Architecture .. 40

4.3 SYSTEM CHARACTERIZATION & DISCUSSION .. 42
4.3.1 Developing Herd Monitor ... 42
4.3.2 Overhead characterization .. 43
4.3.3 System Optimization .. 44

4.3.3.1 Monitor Daemon error handling .. 45
4.3.4 Testing ... 46

4.3.4.1 Host Monitoring .. 46
4.3.4.2 Container Monitoring .. 47

 vii

4.3.4.3 Migrating Container Tracking ... 47
4.3.4.4 MQTT Data Streaming .. 48
4.3.4.5 Container Standard output logging .. 48
4.3.4.6 Monitoring Testing Methodology.. 49

4.3.5 Sampling rate comparison ... 49
4.3.6 Overhead and Scaling ... 50
4.3.7 Distributed Monitoring .. 53

5 RESOURCE PROVISIONING .. 54

5.1 WORKLOAD CHARACTERIZATION .. 54
5.1.1 CPU characterization .. 56
5.1.2 Memory Workload characterization .. 58
5.1.3 Disk IO Workload characterization ... 60

5.2 HERD CONTROL OVERVIEW ... 61
5.2.1 Control Daemon .. 61

5.2.1.1 System Messaging ... 62
5.2.1.2 Placement policies ... 62
5.2.1.3 Integrating all modules .. 63

5.3 DESIGNING CONTAINER PLACEMENT POLICIES .. 64
5.3.1 Instant performance metrics .. 64
5.3.2 CPU workload container placement policy ... 65

5.4 MACHINE LEARNING ... 68
5.5 OLTP POLICY .. 72

5.5.1 TPC-C .. 73
5.5.2 OLTP Policy for TPC-C Workloads .. 76
5.5.3 Discussion ... 79

6 CONCLUSION .. 82

REFERENCES .. 83

APPENDIX I – HERD MONITOR PSEUDOCODE ... 86

APPENDIX II – HERD MONITOR TECHNICAL CHALLENGES .. 88

APPENDIX III - TESTS LIST ... 90

 viii

LIST OF TABLES

Table 3-1 Migration stress testing results after concurrency 19
Table 3-2 Filesystem migration duration comparison 28
Table 3-3 Compressed Filesystem migration duration comparison 29
Table 3-4 Filesystem transfer mode duration comparison 30

Table 4-1 System configuration for scaling tests 52
Table 5-1 Greedy Policy performance 66
Table 5-2 Greedy Policy performance compared to ideal case 66
Table 5-3 Improved Greedy Policy performance 67

Table 5-4 XGBoost parameters and results 70

 ix

LIST OF FIGURES

Figure 1-1 Containers vs Virtual Machines .. 2
Figure 1-2 Compute Node .. 5
Figure 1-3 Control Node ... 6
Figure 1-4 Herd System Architecture ... 6

Figure 3-1 Container Live migration checkpoint and restore sequence 12
Figure 3-2 Detailed Herd Compute with its threads ... 15
Figure 3-3 Compute Daemon Messaging topology for container live migration 16
Figure 3-4 Asynchronous live migration sequence diagram .. 18

Figure 3-5 MACVTAB and TAP/VETH network adapters ... 22
Figure 3-6 MACVLAN adapter and MACVLAN adapter acting in bridge mode 23
Figure 3-7 Container filesystem structure using Overlay2FS... 27

Figure 4-1 Per-host PMCD and PMWEB. .. 36
Figure 4-2 Per-host PMCD, central PMWEB... 36

Figure 4-3 Detailed Herd Monitor with its threads ... 41
Figure 4-4 Two compute-node (top and bottom) CPU utilization for a staircase scenario

testing CPU intensive workload showing signs of heavy system overhead caused by

the monitoring software. Host CPU utilization normalized from 0-1 based on the

number of CPU cores on the Compute Hosts. .. 43
Figure 4-5 Two compute-node (top and bottom) CPU utilization on a staircase scenario

testing CPU intensive workload after the system overhead mitigations and changes.

CPU utilization normalized from 0-1 based on the number of CPU cores on the

Compute Hosts. ... 45

Figure 4-6 Initial results for Host monitoring, CPU system and user utilization over time.

Host CPU utilization normalized from 0-1 based on the number of CPU cores on the

Compute Host. .. 46

Figure 4-7 Initial results for live-migrating Container monitoring. Each color represents a

different host for the same container. Container CPU utilization over time

normalized from 0-N based on the number of N CPU cores on each Compute Host.

 ... 47
Figure 4-8 Live-migrating container tracking. Host CPU utilization over time normalized

from 0-1 based on the number of CPU cores on the Compute Host. 48
Figure 4-9 Host CPU utilization over time normalized from 0-1 based on the number of

CPU cores on the Compute Host on a workload monitored with 5,10,20,30 second

sampling rates ... 50
Figure 4-10 Sampling rate CPU on Control host overhead for diffident sampling rate

configurations. Host CPU utilization normalized from 0-100 based on the number of

CPU cores on the Control Host. .. 51
Figure 4-11 CPU overhead on the compute node for different amount of containers

monitored and hardware configurations. Host CPU utilization normalized from 0-

100 based on the number of CPU cores on the Control Host. 52

 x

Figure 4-12 Host CPU utilization normalized from 0-1 based on the number of CPU

cores on the Control Host monitoring from 0 to 3600 containers 53
Figure 4-13 Host CPU utilization over time normalized from 0-1 based on the number of

CPU cores on a Compute Host reaching system limits .. 53
Figure 5-1 Host CPU Utilization over time normalized from 0-1 based on the number of

CPU cores on the Compute Host on a 4 core and 2 core Compute Hosts 56
Figure 5-2 Container CPU utilization over time normalized from 0-1 based on the

number of CPU cores on each Compute Host. 4 core and 2 core Compute host 57

Figure 5-3 Container CPU utilization over time normalized from 0-N based on the

number of N CPU cores on each Compute Host. Two containers over four different

compute hosts .. 58

Figure 5-4 Host’s CPU Utilization (left) Host Interrupts (right) 59
Figure 5-5 Host’s Memory Utilization (left) Host Pagefaults (right) 59
Figure 5-6 Hosts Interrupts vs Kernel CPU utilization and Container Count as color

(Left) ... 60

Figure 5-7 Host Disk Requests vs Kernel CPU utilization ... 60
Figure 5-8 Detailed Herd Control with its threads.. 61

Figure 5-9 Herd Control Messaging topology .. 62
Figure 5-10 Herd system setup for two compute hosts with live migration support for

resource provisioning. ... 63

Figure 5-11 Container CPU Utilization (top), same container workload’s instant

performance metrics (bottom) ... 64

Figure 5-12 Bagging (independent models) & Boosting (sequential models). 68

Figure 5-13 Forecast of a CPU Workload’s performance over time for all containers on a

scenario vs actual operations per second .. 70
Figure 5-14 Forecast of a Memory Workload’s performance over time for a single

container vs actual operations per second ... 71
Figure 5-15 Feature importance plot for a OLTP workload ... 71
Figure 5-16 OLTP Server container performance gains due to live migration 72

Figure 5-17 Host’s Interrupts vs Kernel CPU utilization while running an TPC-C server

container .. 74
Figure 5-18 Diagram of an Openstack testbed for network bound container live migration

showing 3 compute hosts and a control host. ... 75
Figure 5-19 Host CPU utilization as TPC-C Server containers are migrated out (orange

line are migrations) ... 77

Figure 5-20 Host Disk request as TPC-C Server containers are migrated out (orange line

are migrations) .. 77
Figure 5-21 TPC-C Server Container Disk request gains as it is moved to a new host

(blue old host, green new host) ... 78

Figure 5-22 OLTP Policy for TPC-C workloads overall performance score 78
Figure 5-23 Memory usage overtime of a TPC-C server running 1,2,3,4 and 5 warehouse

workloads with 10 terminals per warehouse each. ... 79
Figure 5-24 TPC-C Warehouse scaling test .. 79

 xi

Figure 5-25 Compute host CPU utilization on a TPC-C staircase scenario. 80
Figure 5-26 Compute host Disk request on a TPC-C staircase scenario. 80
Figure 5-27 8-core CPU Compute host’s disk request while migrating TPC-C containers

out ... 81
Figure 5-28 Baremteal’s (meta-host) disk request running a 8 core CPU compute host

while that compute host is migrating TPC-C containers out 81
Figure 5-29 TPC-C overall score for compute hosts with different CPU core-counts 81

1 INTRODUCTION

Compute power is not always used to its potential. We want to use modern software

technologies to improve system resource utilization, and performance of running

workloads. Our work consisted of developing a cloud platform that achieves this by using

container live migration. This work expands the research of container migration

techniques, real-time system monitoring and resource provisioning policies. In particular,

we have developed tools to handle those tasks, performed analysis and optimizations of

our toolset and evaluated workloads using machine learning to construct compute resource

provisioning polices. We then methodically evaluate the performance of our entire

platform and develop resource provision policies. We have tested our system on two

commodity servers running multiple virtual machines to simulate a realistic cloud

infrastructure. On this virtualized system, we tested our platform by executing a small

number of concurrent container workloads to test system scaling up to thousands of

container workloads.

This thesis is organized by the three main components of our container live migration and

resource providing platform: Container live migration, resource monitoring and finally

resource provisioning. On the first chapter we present an introduction to the problem,

terminology and solution. On the second chapter we review research literature related to

the topics covered by our work. The third chapter discusses our container live migration

toolset, migration techniques and optimizations. The fourth chapter discusses our real-time

resource monitoring tool and analysis of its performance. On chapter five we illustrate how

we analyzed container workloads using machine learning to develop our container

placement polices. Chapter five also discusses the testing framework of our live migration

container placement policies and their measured performance. The last chapter provides a

brief conclusion of our work, findings, and presents directions for future work.

 2

A container is an operating system feature in which the kernel allows the existence of

multiple isolated user-space instances [1]. Docker defines a container as “a standard unit

of software that packages up code and all its dependencies so the application runs quickly

and reliably from one computing environment to another” [2]. Containers are a lighter-

weight, more agile way of handling virtualization, compared to virtual machines. Rather

than spinning up an entire virtual machine with its hypervisor, kernel and system services;

a container packages together everything needed to run a piece of software by sharing the

host’s kernel. Containers provide a level of flexibility to handle many software

environments and tasks [3].

Figure 1-1 Containers vs Virtual Machines

Application checkpointing consists of saving a snapshot of the application's state, so that

it can restart from that point. Checkpoint/Restore in Userspace (CRIU) is a software tool

1.1 Containers

1.2 Live migration and Application Checkpointing

 3

for the Linux operating system that allows to freeze a running application (or part of it) and

checkpoint it as a collection of files on disk [4]. These files can then be used to restore the

application and run it exactly as it was during the time of the freeze. The use of a software

tool like CRIU for application checkpointing, together with a container manager as Docker,

allows a developer to migrate a running container to another host.

Resource provisioning describes the process of assigning appropriate resources to compute

workloads. These tasks require the pairing of the best compute resource to a workload

based on its requirements. This is a complex job that needs to be optimized for the best use

of the available system resources. We monitor in real-time system resource utilization

metrics to determine system bottlenecks. We use container live-migration to improve

system performance by evaluating the available resources on the infrastructure to better

accommodate a container. Resource provisioning evaluation and container migration

decisions are determined by our resource provisioning policies. We developed those

policies after performing system and container workload characterization experiments.

Machine learning algorithms build a mathematical model of sample data, in order to make

predictions or decisions without being explicitly programmed to perform the task. We used

machine learning to analyze system resource utilization, it allows us to select the most

important features of a given workload to focus our resource provisioning policies on those

system metrics. With machine learning we can forecast the performance of a container’s

workload on another compute host to improve our container live migration policy.

1.3 Resource Provisioning

1.4 Machine Learning

 4

Cloud computing has evolved from using virtual machines to containers. Most cloud

provisioning services, and software as-a service (SaaS) providers, use containers for their

“serverless” services. Current software stacks for managing containers, allow automatic

resource allocation by previously selecting host and keeping them in hot-standby. Such

case is Kubernetes’ horizontal autoscaler, that uses user-defined metrics, to allocate

containers on a set of available hosts using a statistical algorithm. [5]

Current software stacks for container management do not use live migration for

performance tuning. Workload managers such as Slurm use application checkpointing for

failure migration but not for resource provisioning or resource balancing. [6]

In this work we present the developed of our container live migration platform that sets an

ideal configuration of container placement. It manages compute resources for the current

running containers based on the available resources so that they are utilized in the most

efficient manner, through the use of live migration.

We conducted workload characterization to understand container resource utilization to

design a container placement policy for live migrations. We used machine learning for

resource feature selection, workload forecasting and develop a methodology to estimate

container performance gains with live migration.

This research contributes with the development of a container live migration toolset for

Docker. Our toolset optimizes container live migration adds support for network connected

containers. We also developed a container state transfer scheme by migration the containers

filesystem, in an optimal manner. We present performance analysis of our live-migration

techniques. We also contribute with the developed of a lightweight container monitoring

tool that supports live migrating containers.

1.5 Problem Statement

 5

For this research, we used a set of comity machines, servers and IoT devices. Multiple

machines act as container hosts and run the live-migration platform. A central machine runs

the monitoring software and runs the data processing and provisioning model to perform

the resource allocation decisions.

Our live migration toolset for containers defines Compute nodes and a Control node that

together act to manage and execute containers. The Compute nodes hosts the containers

and are responsible for orchestrating the container live migration tasks, as well as receiving

communication from the Control node. The Compute node will send status and monitoring

information to the Control node.

Figure 1-2 Compute Node

The Control node is responsible for monitoring the containers and Compute node’s

performance by processing real-time monitoring information. It determines the ideal

container placement configuration based on current and past resource metrics. The Control

node sends container migration request to the Compute nodes.

1.6 Container Live Migration System

 6

Figure 1-3 Control Node

All messaging is done through message brokers on the Compute and Control nodes. The

Compute nodes manage container image caching and container filesystem transfers to

increase performance during the live migration process. Part of the toolset is a set of

command line programs to run container live migration from Compute host to Compute

host. These tools were used to test our platform components and perform system

characterization and resource provisioning experiments. We name our platform Herd, as it

manages a herd of containers (Figure 1-4).

Figure 1-4 Herd System Architecture

 7

2 LITERATURE REVIEW

Performance analysis of container live migration was the main research point by Berg et

al. [7] on their work with container checkpointing for distributed system. Their work

showed that although failure is common, it is possible to live migrate containers. Kudinova

et al. [8] developed a mathematical model for handling process tree in containers for live

migrations, as a container does not have a main “init” process for task management. The

live-migration sequence requires the process tree inside the container to be restored in a

specific way.

For fault tolerance, Lee et al. [9] presented a platform that uses a container-based light

virtualization. Their platform uses an automated build function to isolate an application so

that live migration function can be used. They perform this isolation operation to ensure

that systems have a high reliability in cases of hardware failures. Merino et al. [10]

proposed a resiliency technology to fight through cyberattacks. In particular, they designed

a platform to orchestrate and manage the container lifecycle while enforcing security and

applying resilient techniques. Their platform allows to deploy an application, enforce its

security, and return it to a secure state in case of a cyber-attack. They attempt to achieve

these goals with techniques such as live migration, checkpointing and container cloning.

For resource management and system load management, Arzuaga and Kaeli [11] worked

on virtualized servers and virtual machine live migration. Their work yielded the

development of a statistical algorithm to quantity server load imbalance. We used the

concepts behind this algorithm to develop our container placement policies

Rolim’s et al. [12] work on machine-learning algorithms and fuzzy logic for resource

management did not include the use of container or live-migration. Their work served as a

guide on what algorithms and metrics to explore.

 8

Biswas et al. [13] presented a technique for auto-scaling of resources that dynamically

changes the number of resources for the private a cloud based on system load. Their

technique supports on-demand and advance reservation requests by using machine learning

to predict future workload based on past workloads. Their results demonstrate that these

techniques can effectively lead to a reduction of overall cost and usage of cloud resources.

For resource provisioning and task scheduling for cloud service providers, Cheng et al.

[14] worked on a deep learning model designed to automatically generate the best long-

term decisions. Their model learns from the changing environment to determine the price

for a cloud service. They used artificial intelligence techniques such as target network,

experience replay, and exploration and exploitation to develop a model that provides a high

energy cost efficiency.

Cortez et al. [15] worked on workload forecasting using machine learning to improved

resource management. They developed a system called Resource Central that gathers

virtual machine performance metrics for analysis. They used gradient boosting to predict

resource utilization of a virtual machines to better manage horizontal scaling of cloud

infrastructure. They also researched on cyclical workload characterization to improve their

machine learning model for resource provisioning in a cloud environment.

Ahmed et al. [16] worked on using checkpoint and restore with docker containers to

optimize the deployment of distributed fog infrastructures. They improved loading time of

services on low resource edge-computing devices. They used application checkpoint to

preload and cache the services deployed on their infrastructure.

Wood et al. [17] research on resource management using virtual machine live migration,

Sandpiper, presented a system that automates the tasks of monitoring virtual machines

resource utilization. Their research presents the obstacles they had to handle for virtual

machine monitoring for live migration and the mitigations they used to avoid them. Their

platform sets an evaluation period to characterize a virtual machines workload and define

 9

a resource utilization baseline. With this baseline their Sandpiper system can automatically

migrate virtual machines for better resource provisioning.

Mergenci et al. [18] worked on a generic resource allocation metrics and method for

heterogenous cloud infrastructures. They propose a multi-dimensional best-fit algorithm

that handles multiple resource metrics to compute an ideal compute host and virtual

machine combination. Their algorithm improves resource utilization of their infrastructure.

Very recently, Souza et al. [19] worked on stateful container migration in geo-distributed

environments. They used application checkpointing to migrate containers around large-

scale geo distributed fog-computing infrastructures. They demonstrated that using

container filesystem migration improves application performance.

 10

3 CONTAINER LIVE MIGRATION

Containers provide process isolation by the use of Linux kernel features. Containers can

be daemon-based or daemon-less. A daemon-based container, such as Docker, is managed

by a daemon process that handles the container’s lifecycle. Daemon-less containers, such

as Podman, directly use kernel features through a runtime [20]. A container runs with a

base image, this image holds the containers filesystem. “Docker makes use of kernel

namespaces to provide the isolated workspace called the container. When a container is

executed, Docker creates a set of namespaces for that container. These namespaces provide

a layer of isolation. Each aspect of a container runs in a separate namespace and its access

is limited to that namespace. […] Docker also makes use of kernel control groups

(CGROUPS) for resource allocation and isolation. A CGROUP limits an application to a

specific set of resources. Control groups allow Docker Engine to share available hardware

resources to containers and optionally enforce limits and constraints.” [21] A container is

a process that is isolated from others through the use of namespaces and resource isolated

through the use of control groups.

Application checkpoint is process of freezing an applications state as a collection of files.

The application can be restored from these files. CRIU is a software tool that provides these

features. A checkpoint contains a process file descript information, memory maps and other

stateful objects such as TCP sockets. Application checkpoint is a complex process, not

everything can be checkpointed by CRIU. File locks, devices, and task from other users

are among the things that cannot be checkpointed by CRIU [22].

3.1 Containers

3.2 Application Checkpointing and Live Migration

 11

As a container is a process, it can be checkpointed. Docker provides, as an experimental

feature, the ability to checkpoint and restore a container. Container checkpointing does not

handle the container’s filesystem. Fundamentally, one form of implementing live migration

would be by transferring a checkpoint to another machine. Docker itself does not feature

container live migration. However, our approach to live migration consists of

checkpointing a Docker container’s state, transferring it to another machine, and restoring

said state on a newly deployed container.

As mentioned, our container live migration scheme is achieved by performing a series of

tasks in the most transparent manner. We define two Compute nodes, one as a source node

and the other as a target node. We perform container live migration from the source to the

target. Docker checkpoint and Docker restore are orchestrated to recreate a new container

in the target host with the context of the container from the source host. The transfer of the

checkpoint files are automated and once it is complete, the container restore operation is

performed. Figure 3-1 illustrates all of the required operations.

The checkpoint and restore (C/R) tasks for container migration (Figure 3-1) include:

1. Send CRIU Checkpoint command to Container A in Source Node

2. Checkpoint Container A

3. Create Container B in Target Node

4. Transfer Checkpoint A to Target Node

5. Send CRIU Restore command to Container B in Target Node using Container A

Checkpoint

6. Restore Checkpoint A on Container B

7. Remove Container A in Source Node

The source container is inactive after a checkpoint, the target container is inactive until its

restored. A container should not be at two places at once while active. These tasks must be

performed as quickly as possible as to minimize container down time during migration.

 12

Figure 3-1 Container Live migration checkpoint and restore sequence

 13

3.3.1 Compute Daemon

In each Compute node of our container resource provisioning platform, runs a compute

daemon that handles the sequence of tasks required to manage container live migration.

This compute daemon receives migration requests from the Control node or manually from

a user. We developed the container compute daemon, called Herd Compute, that takes care

of performing automatic container live migration. Herd Compute also handles container

filesystem migration and container network configuration from a source Compute host to

a target Compute host. It keeps track of the container state over different compute nodes.

3.3.2 Container Migration

The compute daemon migration by issuing checkpoint and restore commands to the Docker

Container engine on the compute nodes that are acting as source host and target host. The

daemon handles communication with other hosts using bidirectional communication over

MQTT [23].

3.3.3 Container output logging support for migrations

The container engine, Docker, keeps a log of the standard output of a container. During a

container checkpoint this log is not exported, and the log is lost when a container is

migrated as the source container is destroyed. Herd Compute parses the container log in

real time and streams it over MQTT to be read by other clients, such as the monitor daemon.

We implemented this feature initially for debugging purposes but later it served to validate

a container workload’s performance.

3.3.4 Container Networking

Herd Compute handles live-migration of network-connected containers by rebuilding the

network configuration on the target host from the information present on the source host.

3.3 Herd Compute Overview

 14

This works without any user interaction, as the network information is obtained from each

container’s configuration.

3.3.5 Container Filesytem

Herd Compute can handle container filesystem migration as a configurable option. We

have tested different filesystem migration techniques and optimizations and settled for the

overlay filesystem layer migration because it offered the best performance.

3.3.6 Healthcheck

We implement a watchdog daemon to make sure the compute daemon is always available

and can process requests from the Control node. Herd Compute publishes its status

information so the system can acknowledge its availability. To handle live migrations, the

compute daemon inspects the container, to make sure no errors may have occurred. It

reports its findings to the client that issue the migration command.

3.3.7 Herd Compute architecture

Herd Compute is a multi-threaded software written in Java, its purpose is to orchestrate

between a source Compute node and target Compute node the task to achieve container

live migration (Figure 3-2); its main components are:

• Daemon thread: is the main thread of the program that starts all other threads.

• Migrate thread: orchestrates the live migration tasks by executing other threads and

sending messages to the target host so it executes the required tasks.

• Checkpoint thread: handles the container checkpoint tasks, on the source host, by

communication with the Docker container engine.

• Create thread: handles the container create tasks, on the target host, by

communication with the Docker container engine with information provided from

the source host.

 15

• Transfer thread: handles the checkpoint and filesystem transfer to target host tasks,

on the source host.

• Restore thread: handles the container restore tasks, on the target host, by

communication with the Docker container engine and restoring the transferred

checkpoint on the container created by the create thread. It also handles filesytem

restoration.

• Inspector thread: gathers container information and checks if a migration was

successful. It also provides the ability for remote clients, like the Control node, to

obtain container information before or after migration.

• Rollback thread: handles the cleanup task, on the target hosts, in case a step of a

live migration fails. It is initiated by the source host.

• Logger thread: parses the container standard output log and publishes over MQTT,

it is initiated by a remote client request such as the monitor daemon.

Figure 3-2 Detailed Herd Compute with its threads

 16

3.3.8 System Messaging

Herd Compute manages each request independently from other requests, by launching a

thread per request. This allows a Compute host that is currently acting as a target host and

receiving a container to also act as a source host and also be sending a container. The multi-

threading features of Herd Compute allows the Herd system to asynchronically to handle

concurrent container migrations. It also allows Herd to handle other request such as status

reporting and container health check at the same time.

All messaging on the system is done asynchronously and bidirectionally using the publish-

subscribe MQTT protocol. Each Compute node runs an MQTT message broker that is used

to communicate with other nodes. When a node needs to communicate, it publishes

messages on the other node’s broker (Figure 3-3). Each node is subscribed to its local

broker. The Compute nodes orchestrate themselves the task required to live migrate a

container without the need of a system-wide (multi-hosts) centralized entity.

Figure 3-3 Compute Daemon Messaging topology for container live migration

 17

Through the development of Herd Compute, we tested and implemented different container

live migration techniques. Our initial prototype technique was a scripted checkpoint-only

stateful migration. It only handled container state but did not handle filesystem or network.

This was a serial live migration with no optimizations where every stage of the process is

executed one after the other.

After the initial serial container live migration test and prototypes, we developed an

optimized live migration sequence (Figure 3-4). It parallelizes the task of creating the target

container on the target host and the checkpointing the container on the source host. This

sequence was the first implemented and tested in Herd Compute. The design and

development of the Herd Compute daemon revolved around parallelizing tasks by running

asynchronous threads. This parallel container live migration sequence proved to be faster

than the initial serial one.

3.4 Optimizing live migration

 18

Figure 3-4 Asynchronous live migration sequence diagram

To test live migration, we implemented a series of programs that communicate with Herd

Compute to initiate a container live migration. The first is a command line application, we

named Herd CLI. It takes as parameters the container source host and target host’s name

or IP address, and the container name or ID to be migrated from the source host to the

target host. Herd CLI supports sending the compute daemon migrations options such as

filesystem transfer mode or compression during transfer. We used this application

extensively to test live migration techniques, system deployment, CPU architecture

compatibility among other tests.

 19

To automate our test, we developed another live migration application named Herd Pong.

It automatically migrates a given container from a given host to a series of hosts defined

on a configuration file. We used this to test sequential migrations from one host to another

and random migrations to any host for stress testing and concurrency management testing.

Herd Pong keeps a container on a given host for a given amount of time and migrates it a

given count. It was used it extensively for workload characterization and is the main tool

behind our “staircase” methodology explained in chapter five.

3.4.1 Concurrency management and Stress testing

The multi-threaded design of Herd Compute manages concurrency for its own shared

objects. During our tests we found that CRIU does not handle well concurrent requests. By

issuing a checkpoint command to Docker, CRIU locks its own resources and a concurrent

checkpoint or restore commands will fail, if not handled property by Herd Compute. To

test these effects, we developed concurrency and stress tests. These tests concurrently

migrate containers, compute hosts send and receive containers at the same time, without

any delay between migrations. Some container migrations failed and CRIU logged

resource access errors. To mitigate such errors, we synchronized Herd Computer's

checkpoint and restore threads at the point where each thread issues commands to the

Docker engine. The results of these optimization were faster live migrations and no

resource access errors by CRIU (Table 3-1).

 Non-Synchronized CRIU Synchronized CRIU

Migration Time

(seconds)
1.82s 1.76s

Table 3-1 Migration stress testing results after concurrency

 20

3.5.1 Introduction

For network-bound container live migration like those in Online Transactional Processing

(OLTP) [24] workloads, we explored multiple alternatives that would allow us the

automatic reconnection of a container on a new host. CRIU supports checkpoint and restore

of TPC and UPD sockets, so live migration of a network bound container should be

possible in most cases. The problem arises in the management of IP address, hardware

MAC address and traffic redirection when the container moves from one compute host to

another.

Red Hat’s work on container live migration [25] used a High Availability (HA) and IP-

failover management software called KeepAlivedD. It uses Virtual Router Redundancy

Protocol (VRRP) to define a floating IP for multiple hosts [9], given a correct configuration

between them and the setup of host priority. VRRP maps a virtual network adapter with a

special MAC address to the floating IP that KeepAlivedD will use to redirect traffic from

one host to the other in case of failure. VRRP is implemented directly into the TCP/IP

protocol and will automatically route the traffic from the defined mac address mapped from

the floating IP. KeepAlivedD will issue the MAC address change/redirection command

when it detects that a host is not available. After exploring KeepAlivedD and Red Hat’s

previous work, we found that their solution was too limited for our platform.

Docker container networking works based on Docker network drivers; the default container

network configuration is the bridge mode. In this network mode the container is connected

to the host computer using a network bridge. “A bridge network uses a software bridge

which allows containers connected to the same bridge network to communicate, while

providing isolation from containers which are not connected to that bridge network. The

Docker bridge driver automatically installs rules in the host machine so that containers on

different bridge networks cannot communicate directly with each other.” [26] This default

3.5 Container networking

 21

configuration is set as it allows container network isolation from the host while keeping

the ability of containers to communicate with each other if using the same bridge. To

connect to a container from another machine, each container network port that needs to be

accessed must be exposed from the container in its host machine. Bridge mode works on a

single machine and does not provide us with a viable way to handle live migration

containers.

Docker supports overlay networks that connect multiple Docker daemons together by

setting up a network driver that creates a distributed network among multiple Docker

daemon hosts [27]. Overlay mode works with Docker Swarm [27] and other service

discovery frameworks like Consul [28]. Although this could potentially work, the added

complexity of setting up a swarm service to enable network-bound container live migration

pushed us to keep exploring for other alternatives.

Docker Host networking is another network driver that completely exposes the container

network to the host [29]. It removes all network CGROUP isolation from the container and

merges it with the host CGROUP networking. This is the network mode that Red Hat used,

it allows the use of KeepAliveD by setting up the failover IPs as the compute host IPs. We

tested this networking mode by setting up two Compute nodes and a web server running

inside a container on each host and a floating IP for both nodes. We simulated a migration

by disconnecting the compute host from the network and monitoring the network traffic

with Wireshark. KeepAlivedD detected the disconnection based on its keep alive timer and

sent the VRRP redirection command to direct traffic to the other host. In our case, this

mode is problematic as it merges container and host networking and will only allow one

service to bound a host port, making it work only for one container per Compute host per

workload.

To mitigate the limitations of Docker Host networking we explored the idea of using

MACVTAP network adapters. We could bridge to the host network and reconfigure

 22

Docker host networking to the MACVTAP pair as its main network adapter. This setup is

used for network-enabled KVM/QEMU virtual machines [30]. MACVTAP is a device

driver that simplifies virtualized bridged networking. When a MACVTAP instance is

created on top of a physical interface, the kernel also creates a character device TAP which

can be directly used by KVM/QEMU. With MACVTAP, you can replace the combination

of TAP and bridge drivers with a single module [28]. This setup will need us to manage a

MACVTAP pair for each container on each host, and would potentially need to reconfigure

KeepAlivedD in real-time every time a migration is conducted; as we need to define the

target host as a failover IP; and also to recycle IP address, as VRRP can only support a

handful at a time [31]. After more Linux and Docker network research we found the

MACVLAN adapter.

3.5.2 MACVLAN Adapter

With MACVLAN, multiple virtual network interfaces with different unique MAC

addresses can be created on top of a single physical network adapter. Without MACVLAN,

to connect to physical network from a VM or namespace, a TAP/VETH device needs to be

created (Figure 3-5). One side of the VETH device attached to a VM, the other side

connected to a bridge and the bridge connected to a physical network interface on the host

at the same time [32].

Figure 3-5 MACVTAB and TAP/VETH network adapters

 23

There are multiple MACVLAN modes, we settled with Bridge mode. It allows all

endpoints to be directly connected to each other with a simple bridge via the physical

interface (Figure 3-6). Containers on the same host are be able to communicate with each

other directly through the host network interface without having to reach the network

router. The container compute host is no able to access the container through its own

network interface when using a MACVLAN adapter. We understand that for our case, this

is acceptable as in most cases containers will not be accessed from the Compute host but

rather the Control node. Containers are accessed from any other machine that isn't a

Compute node as containers will be migrating from Compute host to another. This

limitation can be mitigated by setting up another MACVLAN adapter in the Compute host

and defining a route to the container’s subnet. We used this approach during our

development of Herd Compute.

Figure 3-6 MACVLAN adapter and MACVLAN adapter acting in bridge mode

The MACVLAN adapter provides us with the ability to assign each container its own MAC

address and IP address. This allows us to restore a container while keeping its original

address, without the need of setting up a floating IP or using KeepAliveD. The MACVLAN

adapter is a device that works at the data link layer of the OSI network model. As such, the

 24

traffic at network layer only suffers an outage and TCP/IP takes care of handling dropped

packages during live migration.

Docker supports MACVLAN device as a network driver to assign a MAC address to each

container’s virtual network interface. This allows the container’s network interface to be

directly connected to the physical network. To do this, a Docker MACVLAN network

needs to be created designating a physical interface on the Compute host as the parent of

the MACVLAN device. This Docker network need to be configured with the subnet and

gateway of the physical network. At the container creation moment, we define the

container’s network driver as the created Docker MACVLAN network, and we assign an

IP outside the DHCP range of the physical network.

We tested container networking using MACVLAN by setting up a Docker network with

the same gateway and subnet as the physical network. We assigned the Docket network

parent adapter as the network adapter connected to the physical network on the Compute

host. We deployed two containers and assigned them an IP not in use on the physical

network. We tested basic network connectivity between two containers using tools like

PING, traceroute, nmap and iperf3. We monitored network traffic on the host with

Wireshark by assigning a MACVLAN interface connected to the physical adapter and

setting up individual routes to each container. The containers were running in privileged

mode and with network admin mode (CAP_NET_ADMIN) allowing us to test and monitor

the virtual network device within the container. After the initial successful test, we ran the

containers without network admin mode and in non-privileged mode and had the same

results.

To live migrate a container with network support, the target container must be recreated

using the same network configuration as the source container. The source container is

automatically inspected by Herd Compute to then send the create command with the

respective network parameters to the target host. The Herd Compute daemon on the target

 25

host will create the container with the correct network configuration. These parameters

include network name, network mode, network subnet, network gateway and container IP

address.

To test network-bound container live migration, we implemented changes to Herd

Compute and tested a live migration of a container while connected over SSH. We had

successful network communication reestablishment between containers after live

migration. To test network-bound container live migration of two containers connected to

each other that also needed filesystem migration support, we deployed a new testbed on

top of an Openstack hypervisor with three Compute nodes. We deployed an OLTP test

workload by setting up an OLTP server and two OLTP clients. We achieved successful

implementation of automatic network-bound container live migration changes to Herd

Compute.

 26

Checkpointing a Docker container does not migrate the container filesystem [33]. This

causes problems when migrating containers running workloads that require disk access

such as OLTP workloads. To test container live migration with filesystem support, we

developed a scripted prototype that exports the whole container as a TAR file. Exporting

the whole container using the Docker commit command flattens the container filesystem

changes to the base image as well as the base image itself. The final exported file takes as

much space as the image and the changes (file additions and even previous subtracted files).

This TAR file is then transferred to the target host, imported to Docker to then create a

container based on this imported image as a base image. The checkpoint is then restored

on the created target container.

This whole container filesystem migration process can take up minutes as the source

container needs to be flattened, exported, transferred, imported, deployed and checkpointed

in serial as each step depends on the previous step. The image transferred is big, taking

much of the network transfer speed. The export and import process is slow as the container

engine needs to save every file on both the container and base image. This whole container

filesystem migration works, and the restored container has all the files and continues

executing without issues. The live migration is extremely slow, but this is initial proof of

concept to the possible benefits of filesystem migration.

Containers work using an overlay filesystem (OverlayFS). The overlay filesystem is a

difference-based layer filesystem where each layer is a change to the previous layer. It

consists of a lowerdir layer that acts as a base, and in the case of containers is the base

image layer(s). The upperdir is the copy-on-write (COW) changes made by the container

to the filesystem. This upperdir layer is the container layer from the container engine’s

perspective. The lowerdir and upperdir layers are joined to a merged layer, this layer is the

filesytem the container can access (Figure 3-7). All compute hosts have a copy of base

3.6 Filesystem migration

 27

container images we used for testing and those used by the workloads. The compute engine

is capable of downloading a missing base image from the online image repository Docker

Hub. We exploited the concepts behind the OverlayFS structure for our benefit by

migrating only the upperdir layer during live migrations.

Figure 3-7 Container filesystem structure using Overlay2FS

To optimize our container filesystem migration scheme, we want to migrate only the

changes made by the container to the base image. As a container’s filesystem works by

using copy-on-write, only the changes to the base image are stored. The upperdir layer

contains by itself all the changes and thus we don't need to compute the difference to the

base image. To achieve this, we need to know the container filesystem ID and location,

which differs from the container ID and CGROUP ID. We tested our hypotheses by

developing a migration script that obtained the source container filesystem location on

the Compute host using Docker inspect command. It moves the upperdir folder to the

target hosts, copies it to the upperdir layer of the target container’s upperdir location and

restores the checkpoint. Our initial tests were successful and proved that by only

migrating the container’s upperdir layer, a quicker container filesystem migration was

possible. We named this method difference layer migration or Diff layer for short.

To implement the new FS migration scheme on Herd Compute we used the Inspector

thread on the compute daemon to obtain the container filesystem location information

from the Docker inspect command. We successfully implemented our container

 28

filesystem Diff layer live migration changes to Herd Compute improving filesystem

transfer by up to 10x in some cases (Table 3-2).

Filesystem

Migration mode

OLTP Client-container

Migration duration (seconds)

OLTP Server-container

Migration duration (seconds)

No FS transfer 3.06s 2.49s

Whole container FS 22.68s 26.89s

Diff layer 2.58s 2.69s

Table 3-2 Filesystem migration duration comparison

3.6.1 Improving difference layer container filesystem migration scheme

We tested transferring the Diff layer and container checkpoint dump files using

compression, by transferring the files as a compressed TAR file using bzsip. We also tested

transferring the files non-compressed but rather using compressed transfer with SCP. In

both cases filesystem live migration ended up being slower than non-compressed as the

limiting factor was the compression time. We tested different compression ratios, but none

proved to be faster than non-compressed transfer. The compression features are present as

migration options in Herd Control as they could potentially be used for Edge/IoT devices

with low network transfer speed.

Because each Compute host has a copy of the base image used by all workload containers,

a deployed OLTP server Diff layer will not drastically change unless an OLTP client

connects to the OLTP server. That's why our previous tests show little transfer time

difference between a an OLTP client or an OLTP server. To tackle this, we tested container

live migration of an OLTP server during a client connection and at idle. A connected OLTP

 29

server container live migration fails without a filesystem transfer, as the sever has opened

files (Table 3-3).

Filesystem

Migration mode

OLTP

Server-container Migration

duration (seconds)

OLTP Server-container with

a connected OLTP Client

Migration duration (seconds)

No FS transfer 10.77s Failure

Compressed Diff layer +

Checkpoint (bz2)
73.37 113.21s

Diff layer 19.146s 24.93s

Compress Diff layer

(bz2)
54.434s 113.91s

Table 3-3 Compressed Filesystem migration duration comparison

Our initial implementation of Diff layer filesystem transfer copied the layer from the source

host to a temporary location, then transferred it to temporary location at the target container

and finally copied it to the correct system location at the target host. We named this transfer

technique Staged Diff layer transfer. It was implemented this way to transfer both the

container checkpoint and the filesystem because at that moment in the migration sequence

the target container filesystem’s location it is not known by the source compute host. The

target container has not been created, or the create-callback by the target compute host has

not been received by the source host.

To improve transfer efficiency, we tested transferring the container and its Diff layer

asynchronously from the container’s create and restore command in Herd Compute. The

Diff layer is transferred immediately after the container checkpoint is finished. We named

this transfer technique Direct Diff layer transfer. The Herd Compute create and transfer

 30

threads are then joined to send the restore command. The container restore thread at the

target compute node takes care of moving the Diff layer to the correct location to then

restore the checkpoint. This increased live migration speed, because the transfer is

asynchronous from the container creation, if the create thread fails in the target host, a

callback is sent to the source host to stop the transfer, abort the migration and remove the

checkpoint files (Table 3-4). A migration rollback command is sent to the target host to

remove the created container and transferred files (as even in error, a dead container may

be created).

Filesystem

Migration mode

10 Warehouse TPCC Server-container with a

connected client Migration duration (minutes)

Staged Diff Layer: Rsync no

compression, staged transfer
4.15m

Direct Diff Layer: Rsync no

compression, direct transfer
1.32m

Table 3-4 Filesystem transfer mode duration comparison

Network bound container live migration is handled automatically by Herd Compute and

does not require special options, container Diff layer transfer option supports network

bound containers as they are handled by different threads (create thread vs restore thread).

Docker’s container filesystem does not include special files, like the Hosts file, that maps

hosts-names to IP addresses. Each container has a unique host name and Docker

dynamically generates a Hosts file per container. Our tests show that live migrating the

filesystem, and even rewriting the source container’s Hosts file directly on the target’s

containers filesystem, does not work. This causes errors when testing network bound

container live migration as every time a container is migrated, its hostname changes, but

 31

its restored state contains the previous hostname. A hostname and Hosts file mismatch may

cause latency errors when running workloads within the container. To mitigate this, Herd

Compute sets the original hostname of a live migrated container, by using Docker

command line parameters. This original source container hostname, that we call PrimalID

is saved on each Compute host and copied to any target host during filesystem transfer.

In the case of migration error, the Herd Compute can rollback a migration by using the

same checkpoint and restore features used for migration. During our initial tests we ran the

container checkpoint command using the “--leave-running” Docker option so CRIU does

not terminate the container at the moment the checkpoint is created. When not using that

option, if the container checkpoint is successful, the container will be stopped. After many

tests we found out that the container will stay running in the case of a checkpoint error and

will stop in the case of a successful checkpoint. This was used for our benefit to handle

migrations errors.

Herd Compute is designed so that if a container checkpoint fails on a source host, the

checkpoint files will not be transferred, and a rollback command will be sent to the target

host. This removes the target container that was created and is waiting to be restored. If a

container create error occurs at the target host, the compute daemon on said host will send

an error status in its callback to the source host and the source compute daemon will stop

the transfer and handle the error by sending a rollback command to the target host to delete

the inactive target container. If a container fails to be restored, the target host’s compute

daemon will send an error status in its callback to the source host and it will handle the

error by sending the rollback command to the target host.

3.7 Migration rollback

 32

Herd Compute handles errors in three main ways. If checkpoint fails, the compute daemon

rollbacks the target container and keeps the source container running. If remote restore fails

(on a target host), the compute daemon rollbacks the target container and restores the

source container from the checkpoint. If local restore fails, the compute daemon rollbacks

the target container and restarts the source container.

Each case is handled by the Herd Compute Inspector thread that checks the status of a

container to verify if the restore or restart was successful. It is possible for a container to

be successfully restored, but its context damaged because of an improper checkpoint or

restore, due to CRIU errors. In those cases, once the container is restored its execution may

instantly end, so the container status should not be based only on the restore exit status, but

rather Docker running status.

A restarted container loses its context and can be considered a failed migration. This error

was commonly handled when the system was tested without filesystem transfer support,

but after integrating those features, that error is rare. There is also the rare possibility that

a container restart can fail. This failure can be due to other errors such as, no available

drive space, CRIU errors or logic errors. In the case of such error the compute daemon will

notify the migration initiator, Herd Control, Herd CLI, or Herd Pong about its status.

 33

4 SYSTEM MONITORING

For our platform we developed a customizable and lightweight real-time resource

monitoring software called Herd Monitor. It streams in real-time resource utilization

metrics of Compute nodes, its containers and well as performance metrics of workloads

running within live migrating containers. For that, the system must keep track of each

container and its current hosts, must not impact the resources on the compute host and

ideally be independent of the workload within the container. To analyze and validate the

metrics, the system must centralize the standard output of the migrating containers, store

the data for offline use and provide streaming data for real-time visualization or analysis.

In order to keep the monitoring software as lightweight as possible, existing resource

metrics monitoring tools were used. Herd monitor handle all tasks required for automatic

monitoring of live migrating containers as well as its current compute hosts.

The initial monitored data is analyzed to identify possible overhead caused by the

monitoring system. A baseline was defined to properly fine-tune the system to allow the

containers to utilize the available computing resources efficiently. We used offline data

generated by Herd Monitor for workload characterization, infrastructure performance

tuning and forecasting.

For performance monitoring of cloud infrastructure, there are many software solutions

available. Prometheus is a popular solution for container monitoring for its direct

integration with Kubernetes [34]. Prometheus can monitor performance metrics from hosts

and containers and store them on a time series database. Netflix Vector provides

monitoring and real-time visualization by connecting with Performance Co-Pilot to stream

and display performance metrics [35]. For visualization Grafana can connect to

4.1 Introduction

 34

Prometheus database [36] as well as Performance Co-Pilot (PCP) to present in real-time

performance metrics [37]. We also explored the Docker Streaming API but found that it

was too limiting for our needs. Google’s cAdvisor can monitor in real-time Compute hosts

and container and export the data over a REST API server. cAdvisor has limitations

regarding the metrics it can monitor. Performance Co-Pilot is highly customizable and

satisfies all our monitoring needs.

4.1.1 Performance Co-pilot

After exploring multiple monitoring tools and techniques we opted to gather the resource

utilization metrics for the Compute nodes and the containers running in them with

Performance Co-pilot software (PCP). PCP was chosen over other monitoring software

such as cAdvisor as it enables the selection of what metric to monitor. PCP works by

running a Performance Metrics Domain Agent (PMDA) that collects data and reports it to

the Performance Metrics Collection Daemon (PMCD). This data can then be stored to

binary logs or queried by the other PCP tools such as its Web REST API (PMWEBD).

Data provided by PCP can be exported to time-series databases or streamed in real-time

using its own PCP network protocol.

PCP’s gathers most of the resource data from Linux's proc [38] filesystem and can be

extended by installing or development more PMDAs to support other resource information

sources [39]. PCP centralizes all the data and identifies it with a canonical name to group

similar metrics by type. A single metric may have more than one instance, for example, a

network adapter or disk device, as multiple devices may be present on a Compute host.

Each instance has its unique identifier, this ID may variate by host. Metrics that by

definition are a single instance, such as total CPU utilization, use a default ID.

 35

Optional PMDAs for Docker monitoring are available that specifically target Docker

containers, but we opted to use the CGROUP based metrics from PCP as it enables a

simpler PCP configuration in each compute node and the ability to support other container

engines. The Docker extension for PCP didn't provide any new metrics that weren't already

available in PCP.

PCP provides the ability to store a configurable set of metrics to a binary file with the use

of the PMLOGGER service. This data can then be extracted and analyzed. For our

container migration platform, we decided to not use this feature, as we need real time

resource information and prefer to centralize the monitoring configuration on a single host.

Performance co-pilot’s REST API works by requesting the server with the name(s) of the

metric(s) to monitor. The server answers back with a JSON data payload containing the

name of the metric, a timestamp and all instances of the metric with their respective value.

To access the server, a PCP Context token must be generated first. An initial request is sent

to the server to create a new Context token and subsequent requests must be sent using this

token as parameter. When monitoring containers another initial request must be sent to

lock a PCP Context with a container name. The PCP REST server replies back with metrics

only for that container’s CGROUP.

Performance Co-pilot can be deployed in different configurations enabling different types

of network architectures to be tested. The main difference between deployment models are

the PCP services running on the host to be monitored. The minimum services needed to

provide distributed monitoring are the PMCD service running on the host to be monitored

and a PMWED on the network. The PMWEBD can run on the same host to be monitored,

this model is the per-node PMCD and PMWEBD (Figure 4-1)

 36

Figure 4-1 Per-host PMCD and PMWEB.

This model provides higher granularity of control for monitoring and simpler

configuration, with the trade-off of the possibility of increased overhead on the compute

host.

The system can be configured to use a proxy to connect directly to the PMCDs on the

compute hosts and only have a single PMWEB on the network. This model is the per-host

PMCD with central PMWEB (Figure 4-2).

Figure 4-2 Per-host PMCD, central PMWEB.

This model provides a simpler compute-node software deployment with the possibility of

lower overhead, but with a higher complexity of configuration and increased latency.

We tested both PCP deployment models by generating requests to the PMWEBD process.

To test the Per-host PMCD, central PMWEB. we set the Control-host’s PCP configuration

 37

as the main PCP REST server by modifying its local configuration. We also changed the

PCP daemon configuration on the compute nodes to enable central PMWEBD polling. Our

small-scale tests show, that no performance benefit was gained by using this deployment

model, compared to the initial setup and default PCP configuration of Per-host PMCD and

PMWEB PCP deployment model. Using the Central PMWEBD model did show some

degree of overhead but minimal. The cost and complexity of setting up the central PMWEB

model was not worth it for our setup and workloads. We keep our original Per-host PMCD

and PMWEB configuration and tweaked the PCP server timeout values to better suit our

workloads and resource sampling rate.

 38

4.2.1 Monitoring Daemon

In our proposed live migration platform, the Control node runs the system monitoring

daemon that polls the PMWEBD server to gather resource utilization metrics from the

compute-nodes and containers. It keeps track of each container on the system and its

current host during container live migration and is able to actively collect performance

metrics. We developed a system monitoring daemon called Herd Monitor that connects to

PCP to gather metrics, keep track of container migrations, and deliver real-time data to the

Control Daemon.

4.2.2 Configurable Options

Herd Monitor can be configured to monitor any metric provided by Performance Co-Pilot

(PCP). A host-list configuration file defines all the compute hosts to monitor based on their

fully qualified domain name or their IP address. A single configuration file contains the

list of performance metrics names to monitor for all compute host. On this file, each metric

name also contains a list of operations to be applied to the metric, as well as the data type

of the metric. An additional configuration file per individual host is set that contains a list

of performance instance domains per metric name to monitor. If a compute host contains

more than one device, for example disk drive or network adapter, the specific device to

monitor is set on this file as an instance domain. Herd Monitor can also be configured to

monitor other hosts that are not compute hosts. These hosts do not track containers or their

migrations.

For all containers, a single configuration file is set. This file contains the metric names to

monitor as well as the data processing operations to apply to each metric and its datatype.

Herd Monitor allows the configuration of independent performance metric sampling rates

for containers, hosts and meta-hosts as well as the rate in which the container actions, such

as container added or removed, must be tracked as command line parameters.

4.2 HerdMonitor OVERVIEW

 39

4.2.3 Metric Processing

Herd Monitor does real time processing of the monitored performance metrics given the

configuration file that describes the metric and operations to apply. These operations are

customizable and range from metric conversion of bytes to kilobytes, time conversions

such as nano seconds to seconds. The metric processing also takes care of applying

cumulative transformations to change nominal values to interval values of cumulative

counters by doing a derivate over time.

4.2.4 Data Output

All information is logged in comma separated value (CSV) formatted files for later

analysis. A CSV file is generated with the gathered metrics for all compute hosts. A

separate file is generated with the metrics for all containers regardless of compute hosts

and grouped by a universal identification for each workload. Another CSV file is generated

with the actions of each container on each host, such as added or removed to each host;

used to keep track of migrations. For each container, a single log file is generated that

contains the standard output of each workload running on said container, this file can be

parsed and used to validate integrity of the system.

4.2.5 Optional Metrics

Aside from the performance metrics provided by PCP, each generated sample contains

general information such as Compute host fully qualified domain name (FQDN), container

name, time in Unix time format. Herd Monitor can merge additional metrics provided by

a running daemon on the Compute node. For our system, we stream additional container

information not available in PCP from the Compute node to the monitoring daemon using

MQTT. We added this functionality to our Compute daemon but a simple MQTT client

can stream additional information.

 40

4.2.6 Herd Monitor Architecture

Herd Monitor is a multi-threaded software written in Java, its purpose is to gather real-time

resource data, mostly from PCP (Figure 3-2); its main components are:

• Daemon thread: is the main thread of the program that starts all other threads

• Metrics Processor thread: processes raw metrics, it computes transforms and unit

conversions.

• Host Monitor thread: monitors the Compute nodes’ hosts performance metrics

using the PMWED

• Migration Tracker thread: keeps track of container actions, such as added or

removed to keep track of container migration throughout hosts. This thread lets the

Container Monitor thread know what container to monitor and which host to poll

the data from. It keeps track of migration count per container and runs at a faster

sampling rate than the Container Monitor thread to handle very quick container

migrations.

• Container Monitor thread: monitors the containers’ performance metrics of a

container running on a given Compute node using the PMWED. It needs to keep

track of the current control group (CGROUP) assigned to the container per host to

monitor the containers.

• Container action queue: generated by the migration tracker thread and used by

container monitor thread to keep track of what containers to monitor on each host.

It enables Herd Monitor to support container live migration.

• Remote Logger thread: receives the standard output of a container from their

current compute host through MQTT and saves the output to a single file regardless

of current Compute host.

• Message Queue thread: keeps a connection to the MQTT broker to stream real-time

data to other MQTT clients. This thread also handles optional metrics sent by the

Compute node.

 41

• File loggers: outputs the monitored resource data to an independent comma

separated files (CSV) by Compute host, container, migrations, operations and

container standard output. These files are named by the timestamp Herd Monitor

was started.

Figure 4-3 Detailed Herd Monitor with its threads

See Appendix I – Herd Monitor Pseudocode for the pseudocode of the threads found in

Herd Monitor

 42

4.3.1 Developing Herd Monitor

The monitoring daemon development processes started by initially monitoring Compute

nodes resource information, later expanding to containers and container migration tracking

between Compute hosts. With the initial host monitoring test, we compared results with

other existing monitoring tools such as htop for CPU and memory utilization, iotop for disk

metrics and speedometer for network metrics to validate the generated output. We

developed the metric configuration files for each compute host using the datatype and unit

type information (such as instant metric or counter metric) from PCP, using the tool pminfo.

To aid in the creation of those container and host’s configuration files, we developed a

script to gather all the instances of the metrics that could have more than one instance

domain. For container monitoring, Herd Monitor uses a base configuration file and does

not require a definition of instance metrics, as the request to the PCP REST server is unique

(by PCP context token) for each container.

Each metric that is defined by PCP as a counter metric is an incremental value that needs

to me cumulatively transformed from the previous sample to get the change. We do not

include the output of the first received metric so we can compare to the second received

metric and define a baseline. In the rare cases where a cumulatively transformed metrics

results in a negative value, the whole metric sample is discarded as to avoid post processing

data cleanup and erroneous samples to the Control node.

See Appendix II – Herd Monitor Technical Challenges for a writeup of the technical

difficulties we found during the development of Herd Monitor

4.3 SYSTEM CHARACTERIZATION & DISCUSSION

 43

4.3.2 Overhead characterization

The monitoring sampling rates have a direct effect on the overhead of Compute nodes. The

use of PCP to gather resource utilization data from the containers and the Compute nodes

proved to affect the CPU utilization of the Compute nodes up to 10% in some cases. The

overhead on the Compute nodes affects the performance of the containers and their

workloads. PCP requires an access token to remotely monitor hosts called PCP context. To

monitor containers, a new context needs to be created for each container. The combination

of new context creation on each migration, a high sampling rate for containers and

Compute nodes, increased the overall system overhead affecting system CPU utilization

and disk usage (Figure 4-4).

Figure 4-4 Two compute-node (top and bottom) CPU utilization for a staircase scenario testing

CPU intensive workload showing signs of heavy system overhead caused by the monitoring

software. Host CPU utilization normalized from 0-1 based on the number of CPU cores on the

Compute Hosts.

 44

To address this overhead, we studied the PCP deployment models and REST API

parameters to explore how we could optimize our monitoring software to reduce overhead

while keeping functionality.

4.3.3 System Optimization

We started optimizing by removing any unnecessary services running on the Compute

nodes as well as the Control nodes. For the purpose of real-time monitoring PCP services,

like the binary logger (PMLOGGER), are not needed. Another PCP service not required is

the inference engine for performance metrics PMIE, as herd monitor is already performing

some of the actions it provided in a minimal matter and running outside the compute-node.

Any Linux services not required were also shutdown.

We tested different sampling rates to monitor the Compute nodes and containers, settling

with sampling the containers and hosts at a rate that proved to be enough for workload

analysis while reducing overhead. The monitoring software was optimized by reusing PCP

connections and contexts, discarding processed data of migrated containers and modifying

some events to run asynchronously. We split the tasks into containers monitoring, Compute

node monitoring and the migration tracking to their own threads. Data concurrency

management, data synchronization and resource locking were heavily tested to avoid race

conditions and sampling aliasing.

To test these improvements, we added to Herd Monitor the ability to monitor the hypervisor

host, as our testbed is virtualized, that runs the Compute nodes in our experimental setup,

the meta-host. By monitoring the meta-host, we were able to discard the possibility of

resource starvation from the meta-host as a reason to the system overhead present on the

 45

Compute nodes that reduced the performance of the containers’ workload. With these

improvements we were able to reduce system overhead significantly (Figure 4-5)

Figure 4-5 Two compute-node (top and bottom) CPU utilization on a staircase scenario testing

CPU intensive workload after the system overhead mitigations and changes. CPU utilization

normalized from 0-1 based on the number of CPU cores on the Compute Hosts.

4.3.3.1 Monitor Daemon error handling

Herd Monitor can handle network connectivity errors, PCP context error, and will retry the

connections to the Compute nodes. The monitoring daemon also handles resource metric

processing errors and migration tracking errors. The Control daemon in the Control host

handles MQTT errors, missing data and the possible uncorrectable migration errors from

the compute daemon.

 46

Herd Compute’s Remote logger thread also takes care of handling Status Messages. Each

module on the Herd system that uses MQTT sends a status message to announce itself. In

the case of disconnection, each module is set to send a Last Will and Testament [42]

message that is automatically published. In the case of module reconnection, every time a

client subscribes to a topic, a connection message is sent to the monitoring daemon that

can replay messages back. Once of those cases is used to log a container, as a LogStart

message is sent from the monitoring daemon to the compute daemon. If the compute

daemon reconnects, the monitor daemon will send again that message to the compute

daemon, to restart the Logging thread.

4.3.4 Testing

4.3.4.1 Host Monitoring

Host monitoring was tested by running containers within each host and observing its

behaviors on each host (Figure 4-6). We set Herd Monitor hostlist to monitor over the

network multiple Compute hosts.

Figure 4-6 Initial results for Host monitoring, CPU system and user utilization over time. Host

CPU utilization normalized from 0-1 based on the number of CPU cores on the Compute Host.

 47

4.3.4.2 Container Monitoring

Synthetic workloads such as Sysbench and Stress-ng are run within containers to test all

the complete functionality of the system. These workloads are highly customizable and can

be used to emulate different types of workloads such as online transactions processing

(OLTP). They were used to have an initial understanding of the systems performance and

later were used validate the resource metrics gathered by Herd Monitor. Some of the initial

tests was running a memory Sysbench test on a container and migrating it to four different

compute hosts sequentially (Figure 4-7).

Figure 4-7 Initial results for live-migrating Container monitoring. Each color represents a

different host for the same container. Container CPU utilization over time normalized from 0-N

based on the number of N CPU cores on each Compute Host.

4.3.4.3 Migrating Container Tracking

To test container migration tracking a live migration stress test was performed. This test

was used to understand system resilience, performance, overhead and resource capacity.

These tests were performed using the sequential migration tool and keeping the container

as little time as possible in a compute-node without causing sampling aliasing on the

monitoring tools. We tested different tracking rates to monitor the container actions and

settled with tracking rate of 2 seconds. This rate proved to be high enough to handle

quick migrations while not inducing system overhead. For migration tracking, we plot a

 48

blue line that represents the moment in time a container was added, and orange line

represents a removed container from a compute host (Figure 4-8).

Figure 4-8 Live-migrating container tracking. Host CPU utilization over time normalized from

0-1 based on the number of CPU cores on the Compute Host.

4.3.4.4 MQTT Data Streaming

Real time data streaming was originally tested on a different Herd development branch and

then merged to the main code. MQTT streaming was developed by using the same

framework as the one on Herd Compute and tested using Mosquitto client tools[43]. We

tested different quality of service (QoS) priorities and settled with at-least-once for

monitoring streaming and exactly-once for status and control messages.

4.3.4.5 Container Standard output logging

Herd Monitor uses the MQTT features to subscribe to each Compute-node MQTT broker

to get standard output (stdout) published by Herd Compute. The Remote Logging thread

handles Herd Compute reconnections, merges container logs for the same container as it

migrates to other hosts and avoids data duplication by using a nano-second timescale

 49

timestamp (generated by Docker) in the case or reconnections as the Compute Daemons

sends the entire log to the monitoring daemon.

4.3.4.6 Monitoring Testing Methodology

Workload monitoring, container tracking and system overhead was tested on the system

using controlled, repeatable experiments we call scenarios. These scenarios are a set of

scripts that automate sequential container migration. A base scenario consists of starting

all daemons and services, letting the compute-nodes reach a baseline and remotely

launching containers running a synthetic workload. Once the containers are launched and

its baseline reached the script starts migrating containers sequentially to other compute-

nodes. Every property of a scenario for instance, time between migrations, can be

customized. Different scenarios are used to test different aspects of the system such as

sampling rate for monitoring, sampling window for workload analysis, migration stress

testing, resource starvation among other possibilities. Each scenario may require a new

hardware configuration, in those cases, the compute-nodes virtual hardware configuration

is changed accordingly. New hosts can be used for resource-heavier scenarios such as

memory intensive tests or testing RAID disk configurations.

4.3.5 Sampling rate comparison

To test the effects on data resoultion of different sampling rates, we ran the same scenario

multiple times with different sampling rates to observe the granularity of the results.

(Figure 4-9) We settled for 5 second sampling as it provided with enough samples for short

workloads to conduct workload characterization analysis. This test was conducted before

the overhead optimizations were applied to Herd Monitor.

 50

Figure 4-9 Host CPU utilization over time normalized from 0-1 based on the number of CPU

cores on the Compute Host on a workload monitored with 5,10,20,30 second sampling rates

4.3.6 Overhead and Scaling

As one of the main goals behind the development of Herd Monitor is for it to be

lightweight, we tested its overhead on the system by isolating Herd Monitor on a Control

 51

host and running it for one hour while monitoring the Control host. For our workloads, we

settled with 5 second sampling rate, and for migrations we settled for 2 second tracking

rate. Our tests showed that this combination provided with enough samples while keeping

a high metric granularity and low system overhead. (Figure 4-10)

Figure 4-10 Sampling rate CPU on Control host overhead for diffident sampling rate

configurations. Host CPU utilization normalized from 0-100 based on the number of CPU cores

on the Control Host.

We tested scaling of Herd Monitor by deploying hundreds of containers over six compute

hosts (Figure 4-11). Our initial tests show that the Java virtual machine (JVM) was the

main limiting factor. After increasing the available memory to the JVM, the system

memory became a bottle neck. To test scaling, we deployed 25 containers at a time until

the compute host or the control host reached its limits (Table 4-1). We ran each test without

a load (empty containers) and under CPU load (Sysbench 1 thread CPU test). After

reaching an amount of 2700 containers monitored at the same time, PCP started having

 52

errors, and dropping samples for the next amount of containers until reaching out test limit

of 3600 containers on the compute node. The PCP errors where related to the context

timeout for each request to PCP as we tested scaling using 5 second sampling rate and PCP

started showing latency issues and timing out, sending error responses to Herd Monitor.

After changing the timeout out from 10 seconds to 60 seconds, latency improved, and Herd

Monitor reached a total of 2884 containers under monitoring.

Figure 4-11 CPU overhead on the compute node for different amount of containers monitored

and hardware configurations. Host CPU utilization normalized from 0-100 based on the number of

CPU cores on the Control Host.

Monitoring Host System

Memory

Herd Monitor JVM

Memory

Total Simultaneous Monitored

Container Count

4GB 1GB 300

4GB 4GB 450

16GB 8GB 600

16GB 16GB 1800

16GB 16GB 2800

Table 4-1 System configuration for scaling tests

 53

4.3.7 Distributed Monitoring

Herd Monitor can be configured to work in a distributed manner by setting up multiple

monitoring daemons in separate host to communicate with a central control daemon. This

setup should allow the monitoring of higher container counts. Our tests show that

monitoring 75 containers per compute hosts is stable (Figure 4-12). As the main bottle neck

is PCP (Figure 4-13), this can be mitigated by lowering the sampling rate in the case of

many containers.

Figure 4-12 Host CPU utilization normalized from 0-1 based on the number of CPU cores on the

Control Host monitoring from 0 to 3600 containers

Figure 4-13 Host CPU utilization over time normalized from 0-1 based on the number of CPU

cores on a Compute Host reaching system limits

 54

5 RESOURCE PROVISIONING

To provide resource provisioning to containers by the use of live migration, Herd

implements container placement policies. We identified important resource metrics for

each workload that aided us in the development of these policies that brings better

performance to the system through container live migration. We incrementally tested

different workloads and implemented multiple migration policies. We used machine

learning for feature extraction by analyzing the resource utilization data of workloads

coupled with validation results to get to an ideal resource provisioning policy for an Online

Transactional Processing workload (OLTP). We also used machine learning for

performance forecasting of a container’s workload.

To have an initial understanding of the system’s performance under load conditions, we

ran a series of experiments to evaluate the characterization of different workload types.

The experiments helps us understand the performance impact of container live migration

for CPU intensive, Memory intensive and Disk (IO) intensive workloads. Workload

characterization helps us identify correlations between the different resource metrics,

monitored with Herd Compute, for each workload type.

Workload monitoring, container tracking and system overhead was tested on Herd using

controlled, repeatable experiments we call scenarios. These scenarios are a set of scripts

that automate sequential container migration. A base scenario consists of starting all

daemons and services, letting the compute nodes reach a baseline and remotely launching

containers running a synthetic workload. Once the containers are launched and its baseline

reached, the script starts migrating containers sequentially to other Compute nodes. Every

5.1 Workload characterization

 55

property of a scenario for instance, time between migrations, can be customized. Different

scenarios are used to test different aspects of the system such as sampling rate for

monitoring, sampling window for workload analysis, migration stress testing, resource

starvation among other possibilities.

For workload characterization we developed a series of scenarios where container

execution overlaps in time with other containers, we call these overlap sequences staircase

scenarios. They are used to understand Compute host resource depletion and how the

workload behaves on those cases. The containers run synthetic workloads such as Sysbench

and Stress-ng. These workloads are highly customizable and can be used emulate different

types of workloads such as OLTP.

We deployed a testbed that includes all the developed Herd modules and open source

software, installed on virtual machines running Ubuntu 18.04 over a VMware hypervisor.

We named the baremetal machine that runs the hypervisor, which hosts compute nodes,

the meta-host. A multi meta-host setup was tested by extending the VMware Virtual

Network with the addition of a pfSense virtual machine that acts as a router. Using different

meta-hosts allows the system to be tested under different hardware configurations. Each

scenario may require a new hardware configuration, in those cases, the Compute nodes

virtual hardware configuration is changed accordingly. The use of a visualized testbed

enables the system to be modified to add and remove more Compute nodes running on

different hosts. More Compute nodes can be added to the system by cloning a compute

node VM and changing the Herd Monitor configuration. New hosts can be used for

resource-heavier scenarios such as memory intensive tests or higher CPU core count

configurations. Four compute node VMs were used to run the initial workload

characterization experiments.

 56

5.1.1 CPU characterization

Sysbench was used for the CPU characterization experiments. It provides us with the

ability to change thread count and execution time. Sysbench’s benchmarking capabilities

for Linux supports testing of CPU, memory, file I/O, mutex performance, as well as OLTP

using MySQL as server.

We started testing container overlap by setting 4 containers over a 4 core CPU compute

host to evaluate CPU utilization scaling. We then migrated the containers to a 2 core CPU

compute host to understand how the resource metrics behave under a new host. With this

test we can observe how container CPU utilization affects the compute host’s CPU

utilization. (Figure 5-1) We also identified positive correlations between the metrics

monitored such as kernel load with the number of processes in the runnable state.

Figure 5-1 Host CPU Utilization over time normalized from 0-1 based on the number of CPU

cores on the Compute Host on a 4 core and 2 core Compute Hosts

 57

With the CPU workload characterization experiments, we studied the effect of single

threaded and multi-threaded workload as it overlaps with other containers on the same host.

We evaluated the effects of migrating containers to and from hosts that don't have enough

resources to support the workloads. (Figure 5-2) We also understood the CPU-time

scheduling of multi-threaded workloads and single-threaded workloads on the same

resource-depleted host

Figure 5-2 Container CPU utilization over time normalized from 0-1 based on the number of

CPU cores on each Compute Host. 4 core and 2 core Compute host

CPU utilization for containers is measured as non-normalized host CPU utilization, that is

without taking into account the Compute host CPU core count. A double-threaded

workload's baseline is 200% while a single-threaded workload is 100%. This utilization

can then be normalized to host CPU utilization by dividing it by the host CPU core count.

The host's scheduling algorithm (CFS) distributes CPU utilization evenly to the containers

even if they have a higher thread-count. CPU utilization normalization can be enabled or

disabled for hosts and containers in the Herd Monitor metrics configuration file. We

 58

decided to keep the Host CPU utilization normalized by host CPU core count while keeping

the containers CPU utilization not normalized. This allows us to better understand how a

containers performance scales over different compute hosts. With the CPU tests we can

visualize the performance drops on each container based on its available CPU time and the

resource utilization gains when moved to a host with available resources. (Figure 5-3)

Figure 5-3 Container CPU utilization over time normalized from 0-N based on the number of N

CPU cores on each Compute Host. Two containers over four different compute hosts

5.1.2 Memory Workload characterization

For Memory-based workload characterization we follow the same steps we did for CPU-

based workload characterization using the stress test software called Stress-ng. It tests

various computer’s physical subsystems as well as operating system kernel interfaces. We

ran a staircase scenario with 4 virtual memory workloads of 256MB of size on containers

hosted on a compute node with 1GB of RAM. The purpose of this experiment was to force

the system into memory resource exhaustion so we can observe system memory paging

behavior during live migration.

 59

As the compute nodes have a small amount of system memory, the host reaches memory

saturation by the time the 3rd container is launched (Figure 5-4). The host enters severe

paging, visible by the high major faults per second the system required loading a memory

page from disk and high Kernel CPU utilization. When a container is migrated to another

host the pagefault count decreases and User CPU utilization increases (Figure 5-5). We

identified positive correlations between Kernel CPU utilization and pagefault count and

software Interrupts (Figure 5-6).

Figure 5-4 Host’s CPU Utilization (left) Host Interrupts (right)

Figure 5-5 Host’s Memory Utilization (left) Host Pagefaults (right)

 60

Figure 5-6 Hosts Interrupts vs Kernel CPU utilization and Container Count as color (Left)

 3 cluster Kmeans over same data (right)

5.1.3 Disk IO Workload characterization

We ran a series of staircase scenarios using Sysbench IO tests with different configuration

and sizes. Testing sequential and random read and write with different ratios with payloads

of 100MB and 1GB. We found that that disk operations and disk throughput are closely

related as well as system interrupts and CPU kernel utilization (Figure 5-7).

Figure 5-7 Host Disk Requests vs Kernel CPU utilization

 61

5.2.1 Control Daemon

The Control node also runs the Control daemon. Its main task is to use the data that was

gathered and processed by the Herd Monitor from the Compute nodes and containers to

make container placement and migration decisions. We developed a system resource

provisioning module called Herd Control that processes the real time data a given

timeframe and move the containers to another Compute host based on the active migration

policy to achieve better overall system resource utilization.

Herd Control is a multi-threaded software written in Java, its purpose is to process real-

time resource data, and send migration requests (Figure 5-8); its main components are:

• Daemon thread: is the main thread of the program that starts all other threads

• Message queue thread: keeps a connection to the MQTT broker to receive real-time

data to the Monitor Daemon.

• Migration Controller: stores the real-time data in DataFrames to process it and send

migration requests.

Figure 5-8 Detailed Herd Control with its threads

5.2 Herd Control Overview

 62

5.2.1.1 System Messaging

For container live migration, the Herd Control sends a message to a Compute daemon by

publishing on its respective compute host's MQTT broker. The compute daemon on that

hosts will start the migration processes by communicating with the target host (Figure 5-9)

that will receive the migrated container to finish the migration process. During monitoring,

the compute nodes will stream resource metrics to the control-node using MQTT.

Figure 5-9 Herd Control Messaging topology

The system messaging can be summarized in:

• Container Migration: node to node

• System Monitoring: nodes to central

• System Controlling: central to nodes

5.2.1.2 Placement policies

Herd Control implements the container live migration policies that manage system resource

provisioning. The resource utilization data streamed in real-time from Herd Monitor is used

by the policies to determine container live migration placement thought the system.

 63

5.2.1.3 Integrating all modules

To test system integration of all modules we developed a preliminary resource provisioning

policy that live-migrates containers based on the data provided by Herd Monitor (Figure

5-10).

Figure 5-10 Herd system setup for two compute hosts with live migration support for resource

provisioning.

 64

5.3.1 Instant performance metrics

With the workload characterization experiments we understood how each workload

managed resources. We also observed the possible benefits of container live migration to

other hosts that have more available resources. The Sysbech workload provides the ability

to report the instant performance metrics during execution, we used this to test our

hypothesis that more resource utilization translates to better performance. To get this data

in real time from each container we modified Herd Control to parse and filter in real time

the containers standard output and stream over MQTT to Herd Monitor as another resource

metric. We call these metrics ops, as in operations per second. We then evaluate each

workload with its respective workload performance report to validate the actual

performance of each test (Figure 5-11).

Figure 5-11 Container CPU Utilization (top), same container workload’s instant performance

metrics (bottom)

5.3 Designing Container placement policies

 65

5.3.2 CPU workload container placement policy

Our initial placement policy used a greedy approach that tries to manage resource

provisioning by live migration containers from a Compute host with high CPU utilization

to a host in the system that has the most CPU resources available. This policy normalizes

container CPU utilization based on host core count and picks the container with the lowest

CPU usage and moves it to the target host. This placement policy helped us develop Herd

Control and understand the performance of the whole Herd system once integrated. We

named this policy the CPU Greedy Policy.

To test this placement policy, we developed a new type of scenario that is randomly

generated based on a set of parameters. These include total experiment length, individual

container workload length, and other parameters such as workload thread count, memory

utilization and total number of Compute hosts available. To generate these scenarios a

GoLang application was developed by one of our undergrads research students. It used a

random seed that can regenerate the same output, it is based on our staircase scenario

scripts. Each randomly generated scenario launches a total of around 400 containers placed

on Compute hosts at different time intervals.

To run these scenarios, we deployed a new testbed on an Openstack cluster. The cluster

consisted of two Dell PowerEdge R6515 with AMD EPYC processors with 64 vCores and

128GB of RAM each. This testbed was used to run from 2 to 30 virtual machines,

depending on the workloads, that acted as Compute Nodes. We automated the deployment

of different Openstack testbeds and Compute node virtual machines to easily change

system configuration.

To evaluate our policy, we ran the randomly generated scenarios without Herd Control

acting upon the system; this is our performance baseline and control experiment. The

 66

instant performance metrics for each container were recorded to validate the experimental

results (Table 5-1).

 Control CPU Greedy Policy Gain vs Control

Average Hosts CPU utilization 0.68 0.80 17.94%

Average Containers CPU utilization 0.73 0.80 10.69%

Average Workloads Ops 579.85 617.03 6.41%

Table 5-1 Greedy Policy performance

We also developed a cheating policy that understands the workload and tires to set an ideal

container placement. We use this policy to compare our CPU Greedy Policy with the

baseline (control) experiment to see how far off we are from an ideal system state (Table

5-2).

 Control Ideal
CPU Greedy

Policy

Gain vs

Control

Average Hosts CPU utilization 0.46 0.66 0.55 19.49%

Average Containers CPU

utilization
1.23 1.38 1.33 7.74%

Average Workloads Ops 2,025.04 2,328.41 2,173.40 7.33%

Table 5-2 Greedy Policy performance compared to ideal case

The CPU Greedy Policy has a baseline of 1 for the number of processes running within the

container. Thanks to our CPU workload characterization experiments we learned that the

Compute host scheduling algorithm equally shares CPU resources, regardless of the

amount of process within a container, with all containers. Our characterization experiments

showed us that a multi-threaded workload will be the most affected by other container’s

 67

resource consumption. The cheating policy knows the number of threads withing each

container as to place them in an ideal host. The closest metric that could be monitored, that

resembles the number of threads of a workload in a container, is the process identifier (PID)

count of a container. This metric is not available in PCP, or Docker Stats or its API. We

obtain this metric from directly from CGROUP filesystem in the compute hosts and stream

it to Herd Monitor. With this new information we developed a new placement policy that

handles multi-threaded workloads (Table 5-3).

 Control Ideal
CPU Greedy Policy for

Multi-thread Containers

Gain vs

Control

Average Hosts CPU

utilization
0.46 0.66 0.59 28.67%

Average Containers

CPU utilization
1.23 1.38 1.43 16.56%

Average Workloads

Ops
2,025.04 2,328.41 2,336.46 15.38%

Table 5-3 Improved Greedy Policy performance

Our container placement policies show that our Herd resource provisioning platform for

container can improve overall system performance of the running workloads.

See Appendix III - Tests list for a complete list of all the tests, experiments and workload

characterization tests we ran during the development of Herd.

 68

For feature selection and performance forecasting, we used the gradient boosting

implementation XGBoost [44]. Gradient boosting is a machine learning technique for

regression problems. Used for estimating relationships between an outcome variable and

features. Gradient boosting works by producing a group of weak prediction models that

can be used together to form a strong prediction model (Figure 5-12).

Figure 5-12 Bagging (independent models) & Boosting (sequential models).

“In Boosting algorithms each classifier is trained on data, taking into account the previous

classifier’s success. After each training step, the weights are redistributed. Misclassified

data increases its weights to emphasize the most difficult cases. In this way, subsequent

learners will focus on them during their training.”[45]

We selected this machine learning model and implementation as it proved, based on our

literature review, that it can provide relatively accurate forecasting for its short training

time. We tested metric forecasting on CPU and GPU using the Azure Resource Central’s

dataset for VM CPU utilization. XGboost provides multiple approximation algorithms with

various degrees of accuracy and training speed. We found that its GPU and CPU

performance is similar for the hists tree construction algorithm that is an optimized

approximate greedy algorithm.

5.4 Machine Learning

 69

With the use of our monitored resource utilization data and workload validation output, in

the form of operations per seconds (ops), we can train a machine learning model to forecast

container performance. By utilizing resource metrics, we can forecast the performance of

a container when running on another host. Our dependent variable is the container ops, our

independent variable are the resource metrics of the container itself and its host. We

forecast a container’s performance by using the resource metrics of a container and those

of a target host. We predict the operations per second of a container on said target host.

Due to the ascynchronic nature of the monitoring daemon, to forecast a container we need

to re-sample the metrics to a given sample window. By re-sampling the metrics, we can

align them in time to have a direct comparison of a container’s resource utilization in regard

to its host.

Our methodology was to run many randomly generated scenarios, gather all the data,

resample the metrics to a sample window, close or equal to the monitor sampling rate. We

then joined the container metrics with its host metrics and workload operations per second

using dataframes. We trained a XGBoost regressor by splitting the data into a training set

and a testing set. We forecasted the operations per second for all containers by evaluating

the model with host and container metrics (Figure 5-13). We also tested single container

performance forecasting to validate the model (Figure 5-14). We evaluated the model for

a container by providing data for another host that isn't the container’s current compute

host.

We conducted a preliminary evaluation of online transaction processing workloads using

Sysbench. We deployed a MySQL container that acts as the OLTP server and a Sysbench

container that acts as the OLTP client. The initialization process requires the building and

population of a database on the OLTP server container by the OLPT client container. Once

the database is created, the workload begins. The Sysbench OLTP Client executes SQL

 70

queries to the OLTP server container. For this setup we used network bound container live

migration with filesystem migration support. Sysbench OLTP tests also provide instant

performance metrics that were used to evaluate our machine learning model for

performance forecast and feature selection.

Below are the parameters and percentage of error of the forecasters for each workload

type (Table 5-4).

Workload Samples
Regressor

estimators

Early

Stopping

rounds

Mean

absolute

error

Mean absolute

percentage error

CPU 10475 1000 100 36.02 4.13

Memory 23871 1000 100 320.32 7.83

OLTP 1493 1000 100 7.31 2.68

Table 5-4 XGBoost parameters and results

Figure 5-13 Forecast of a CPU Workload’s performance over time for all containers on a

scenario vs actual operations per second

 71

Figure 5-14 Forecast of a Memory Workload’s performance over time for a single container vs

actual operations per second

We also used XGBoost for feature selection. To understand the performance metrics of

an OLTP workload, we used the feature importance plot for a trained gradient boosting

model using host and container data for OLPT scenarios. We identified disk IO

operations, disk activity and CPU utilization as the main metrics that can be used as a

performance indicator (Figure 5-15).

Figure 5-15 Feature importance plot for a OLTP workload

 72

With the information gathered through XGBoost’s feature selection and the

characterization experiments for the OLTP workload, we developed a preliminary policy

to handle OLTP container resource provisioning. We focused our policy on compute host

disk activity and container disk access requests. This is a greedy policy that takes the

container with the highest disk request per seconds metric from the compute host with the

highest percentage of disk activity. The container is live migrated to the Compute host with

the lowest disk activity percentage. The preliminary OLTP policy allowed us to better

understand the OLTP server’s performance while live migrating by evaluating resource

metrics with performance metrics (Figure 5-16). We found out that a policy based on disk

activity is not ideal as even a small amount of disk request generates a high percentage of

disk activity.

Figure 5-16 OLTP Server container performance gains due to live migration

5.5 OLTP Policy

 73

5.5.1 TPC-C

TPC-C is the benchmark published by the Transaction Processing Performance Council

[46] (TPC) for Online Transaction Processing (OLTP). It runs a mix of five concurrent

transactions of different types and complexity either executed on-line or queued for

deferred execution. The TPC-C database is comprised of nine types of tables with a wide

range of record and population sizes that portrays the activity of a wholesale supplier. Its

performance is measured in transactions per minute (tpmC).

TPC-C simulates a complete environment where a population of terminal operators

executes transactions against a database. The benchmark is centered around the principal

activities (transactions) of an order-entry environment. In the TPC-C business model, a

wholesale parts supplier (called the Company below) operates out of a number of

warehouses and their associated sales districts. The TPC benchmark is designed to scale

just as the Company expands and new warehouses are created.

We used TPC-C workloads to evaluate the performance of our container placement

policies. The TPC-C implementation we used outputs an overall benchmark score at the

end of the execution and does not provide instant performance metrics. We performed a

workload characterization to understand the behavior of the workload in and tested our

OLTP container placement policy with TPC-C workloads.

The workload is very similar to Sysbench OLTP workload. It runs a database sever

container and a client container. The workload parameters allow scaling of connected

clients to the database server and the size of the database. We identified similar behavior

to the OLTP workload such as heavy disk IO (Figure 5-17).

 74

Figure 5-17 Host’s Interrupts vs Kernel CPU utilization while running an TPC-C server container

We conducted a scaling test by varying the number of TPC-C terminals (clients) connected

to a server to understand system limits and tune the database configuration accordingly.

We deployed a 6-Compute node and 1 Control node testbed in Openstack for network-

bound container live migration with filesystem support (Figure 5-18). Our scenarios

consisted on launching 5 TPC-C servers with a database of 10 Warehouses. On another

compute host we launched one TPC-C client container per each TPC-C server. Each client

container simulated 10 Terminals per warehouse for a total of 100 terminals connected to

teach server. The ideal result is that Herd Control instructs the migration of TPC-C servers

to other Compute hosts for better resource provisioning.

We developed a new OLTP migration policy based on disk requests per compute host and

container. To mitigate problems, such as container bouncing, we only evaluate hosts and

containers that reach a minimum threshold of monitored samples. We set resource reward

thresholds for disk activity and disk request to be reached for a host to be a valid target

Compute host for live migration. Based on our workload characterization, we set a disk

request baseline that is used for the disk request’s threshold. This baseline is experimentally

computed. We ran an IO Sysbench workload and monitored it with Herd Monitor to

compute said baseline.

Figure 5-18 Diagram of an Openstack testbed for network bound container live migration showing 3 compute hosts and a control host.

5.5.2 OLTP Policy for TPC-C Workloads

Our OLTP Policy finds the container with the highest disk ops and set as candidate,

migrate the candidate container to the compute host with minimum disk ops if:

• Candidate container has enough resource metric samples.

• Compute hosts with the minimum disk ops compared to the compute host with

maximum disk ops have reached the disk ops reward threshold.

• Compute host with the highest disk activity has reached the disk active threshold.

• Compute hosts with the minimum disk activity compared to the compute host

with maximum disk activity have reached the disk activity reward threshold.

• Candidate container has reached the disk ops baseline threshold.

• Compute host with the minimum disk ops is not the same as the candidate

container’s current compute host.

If those conditions are not met, re-evaluate the system and search for new candidate

containers, if no new candidates are found evaluate the system with the CPU Greedy

Policy for Multi-thread Containers.

We tested our policy with the following parameters:

Disk Ops Baseline = 8000

Disk Ops Baseline Threshold = 0.005

Disk Ops Reward Threshold = 0.35

Disk Active Threshold = 0.15

Disk Active Reward Threshold = 0.15

Missing Samples Threshold = 0.02

Herd Monitor Sampling Rate = 5s

Herd Monitor Container Tracking Rate = 2s

Herd Control Sample Window= 30s

Herd Control Evaluation Rate= 150s

Herd Control Initial Evaluation Delay = 150s

Our OLTP policy showed that CPU load lowers as containers are move out of a Compute

node (Figure 5-19). It also shows how disk throughput lows when containers are moved

 77

out of the Compute node (Figure 5-20) and how a container’s disk throughput increases

as it moves to other Compute nodes (Figure 5-21)

Figure 5-19 Host CPU utilization as TPC-C Server containers are migrated out (orange line are

migrations)

Figure 5-20 Host Disk request as TPC-C Server containers are migrated out (orange line are

migrations)

 78

Figure 5-21 TPC-C Server Container Disk request gains as it is moved to a new host (blue old

host, green new host)

To evaluate the policy, we ran a base experiment without migrations on a 2-core CPU

compute host and on a 4-core CPU compute host. We then ran the same experiments

using our placement policy. We ran each experiment 10 times for a total of 40

experiments. Our final results show an increase in tractions per minute 49.05 vs 110.17

tpcM for a 2 core compute hosts and 51.51 vs 112.01 tpcM for a 4 core Compute node

(Figure 5-22).

Figure 5-22 OLTP Policy for TPC-C workloads overall performance score

 79

5.5.3 Discussion

The performance benefits of the policy on our TPC-C workload implementation are evident

on the total amount of transactions per minutes. The overall performance will be affected

the experiment’s duration and the evaluation period of the policy. A faster evaluation will

migrate containers quicker and give better overall score. The duration of the workload will

affect its performance, as the more time a server runs on a new host, more total transaction

can be performed with better performance. We conduced warehouse scaling test to

understand the systems limits (Figure 5-23). It helps us understand how the TPC-C

workload behaves with an increasing number of Warehouses. We found out that once the

system reaches memory limits the transaction per minute stops scaling and the system fails

(Figure 5-24).

Figure 5-23 Memory usage overtime of a TPC-C server running 1,2,3,4 and 5 warehouse workloads

with 10 terminals per warehouse each.

Figure 5-24 TPC-C Warehouse scaling test

 80

We also conducted staircase scenarios to test Disk scaling. Due to the nature of our

virtualized testbed, live migration might not produce positive benefits as all compute hosts

are accessing the same physical device. Our staircase test shows that the TPC-C servers

does not CPU limits on an 8 core CPU compute host (Figure 5-25) and reaches a reach disk

limits that we use as parameter to calibrate our policy (Figure 5-26).

Figure 5-25 Compute host CPU utilization on a TPC-C staircase scenario.

Figure 5-26 Compute host Disk request on a TPC-C staircase scenario.

To test our hypothesis, that the baremetal host is the limiting factor in our test, we

monitored the meta-host during one of our policy evaluation experiments. When running

on an 8-core CPU compute host, the disk request is affected by live migration (Figure

5-27), but the meta-host disk request stays the same (Figure 5-28). The experiments

resulted in no container performance benefit with live migration. We conducted more

experiments varying the amount of CPU cores on the compute host. Our experiments

showed that for our specific testbed, a 4 core or 2 core compute hosts can be used for

 81

resource provisioning (Figure 5-29). The Virtual Machine’s Kernel CPU utilization

reaches system limits, bottle necking resource access to disk for requests. We used this to

our advantage to synthetically provision disk access to better evaluate our experiments.

Figure 5-27 8-core CPU Compute host’s disk request while migrating TPC-C containers out

Figure 5-28 Baremteal’s (meta-host) disk request running a 8 core CPU compute host while

that compute host is migrating TPC-C containers out

Figure 5-29 TPC-C overall score for compute hosts with different CPU core-counts

 82

6 CONCLUSION

We developed an optimized container live migration toolset that can quickly migrate

network-bound containers with filesystem support. We designed and developed a

lightweight resource monitoring tool that supports live-migrating containers. We

developed a resource provision toolset that implements different container placement

policies. We compared the performance of different live migration techniques and

developed our own optimized techniques. We developed a methodology to process system

and container resource information for machine learning purposed. We designed a machine

learning model for container resource provision and forecasting. We compared different

provisioning algorithms. We design, developed, implement, tested and characterized a

Distributed Resource Provisioning for Containers Using Machine Learning and Live

Migration.

As future work we can continue evaluation different migration policies. We can perform

more system optimizations and handle support for other real-time streaming platforms and

container orchestration software. We can continue testing our system for other uses cases

and platforms, such as IoT systems. Finishing porting our toolset to handle ARM computer

architectures and testing for other computer architectures such as RISC-V. Filesystem

optimization can potentially open another area of research to handle better support for

container live migration. We plan on publishing our toolset components and large

monitoring dataset as an open-source project.

REFERENCES
[1] S. Hogg, “Software Containers: Used More Frequently than Most Realize |

Network World,” Network World, 2014.

https://www.networkworld.com/article/2226996/software-containers--used-more-

frequently-than-most-realize.html (accessed Oct. 28, 2020).

[2] Docker Team, “What is a Container? | App Containerization | Docker,” Docker.

https://www.docker.com/resources/what-container (accessed Oct. 28, 2020).

[3] IBM Cloud Team, “Containers vs. VMs: What’s the Difference? | IBM,” IBM,

Sep. 02, 2020. https://www.ibm.com/cloud/blog/containers-vs-vms (accessed Oct.

28, 2020).

[4] “CRIU,” criu.org, Apr. 29, 2020. https://criu.org/Main_Page (accessed Oct. 28,

2020).

[5] “Horizontal Pod Autoscaler | Kubernetes,” Kubernetes.

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-

autoscale/#algorithm-details (accessed Oct. 28, 2020).

[6] “Slurm Workload Manager,” Slurm, Nov. 24, 2013.

https://slurm.schedmd.com/slurm.html (accessed Oct. 28, 2020).

[7] G. Berg and M. Brattlöf, “Distributed Checkpointing with Docker Containers in

High Performance Computing,” Sweden, Jun. 2017. Accessed: Oct. 28, 2020.

[Online]. Available: www.hv.se.

[8] M. Kudinova and P. Emelyanov, “Building mathematical model for restoring

processes tree during container live migration,” in Proceedings - 2017 4th

International Conference on Engineering and Telecommunication, En and T 2017,

Dec. 2017, vol. 2017-Janua, pp. 160–164, doi: 10.1109/ICEnT.2017.41.

[9] X. Merino Aguilera, C. Otero, M. Ridley, and D. Elliott, “Managed Containers: A

Framework for Resilient Containerized Mission Critical Systems,” in IEEE

International Conference on Cloud Computing, CLOUD, Sep. 2018, vol. 2018-

July, pp. 946–949, doi: 10.1109/CLOUD.2018.00142.

[10] J. Lee and K. Kang, “Poster: A lightweight live migration platform with container-

based virtualization for system resilience,” in MobiSys 2017 - Proceedings of the

15th Annual International Conference on Mobile Systems, Applications, and

Services, Jun. 2017, p. 158, doi: 10.1145/3081333.3089302.

[11] E. Arzuaga and D. R. Kaeli, “Quantifying load imbalance on virtualized enterprise

servers,” in WOSP/SIPEW’10 - Proceedings of the 1st Joint WOSP/SIPEW

International Conference on Performance Engineering, 2010, pp. 235–242, doi:

10.1145/1712605.1712641.

[12] C. O. Rolim, F. Schubert, A. G. M. Rossetto, V. R. Q. Leithardt, C. F. R. Geyer,

and C. B. Westphall, “Comparison of a Multi output Adaptative Neuro-Fuzzy

Inference System (MANFIS) and Multi Layer Perceptron (MLP) in Cloud

Computing Provisioning.”

[13] A. Biswas, S. Majumdar, B. Nandy, and A. El-Haraki, “Automatic resource

provisioning: A machine learning based proactive approach,” in Proceedings of

the International Conference on Cloud Computing Technology and Science,

 84

CloudCom, Feb. 2015, vol. 2015-Febru, no. February, pp. 168–173, doi:

10.1109/CloudCom.2014.147.

[14] M. Cheng, J. Li, and S. Nazarian, “DRL-cloud: Deep reinforcement learning-based

resource provisioning and task scheduling for cloud service providers,” in

Proceedings of the Asia and South Pacific Design Automation Conference, ASP-

DAC, Feb. 2018, vol. 2018-Janua, pp. 129–134, doi:

10.1109/ASPDAC.2018.8297294.

[15] E. Cortez, M. Russinovich, A. Bonde, M. Fontoura, A. Muzio, and R. Bianchini,

“Resource Central: Understanding and Predicting Workloads for Improved

Resource Management in Large Cloud Platforms?,” in SOSP 2017 - Proceedings

of the 26th ACM Symposium on Operating Systems Principles, 2017, pp. 153–167,

doi: 10.1145/3132747.3132772.

[16] A. Ahmed and G. Pierre, “Docker-Pi: Docker container deployment in fog

computing infrastructures,” IEEE Int. Conf. Mob. Cloud Comput., vol. 9, no. 1, pp.

6–27, Apr. 2020, doi: 10.1504/IJCC.2020.105885.

[17] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Sandpiper: Black-box

and Gray-box Resource Management for Virtual Machines,” Amherst, 2009.

[18] C. Mergenci and I. Korpeoglu, “Generic resource allocation metrics and methods

for heterogeneous cloud infrastructures,” J. Netw. Comput. Appl., vol. 146, p.

102413, 2019, doi: 10.1016/j.jnca.2019.102413.

[19] P. Souza Junior, D. Miorandi, G. Pierre, and G. Pierre Stateful, “Stateful Container

Migration in Geo-Distributed Environments,” 2020. Accessed: Nov. 04, 2020.

[Online]. Available: https://hal.inria.fr/hal-02963913.

[20] “(No Title).” https://podman.io/getting-started/ (accessed Nov. 04, 2020).

[21] “Understanding the Docker Internals | by Nitin AGARWAL | Medium.”

https://medium.com/@BeNitinAgarwal/understanding-the-docker-internals-

7ccb052ce9fe (accessed Nov. 04, 2020).

[22] “What cannot be checkpointed - CRIU.”

https://www.criu.org/What_cannot_be_checkpointed (accessed Nov. 04, 2020).

[23] “MQTT - The Standard for IoT Messaging,” MQTT. https://mqtt.org/ (accessed

Oct. 28, 2020).

[24] “What is OLTP? | IBM.” https://www.ibm.com/cloud/learn/oltp (accessed Nov.

04, 2020).

[25] A. Reber and M. Rapoport, “Container Migration All Around The World,” no.

688386, 2017, Accessed: Oct. 29, 2020. [Online]. Available: http://xonotic.org/.

[26] Docker Inc., “Use Bridge Networks - Docker Documentation,” 2019.

https://docs.docker.com/network/bridge/ (accessed Oct. 29, 2020).

[27] Docker Inc., “Use Overlay networking - Docker Documentation,” 2019.

https://docs.docker.com/network/overlay/ (accessed Oct. 29, 2020).

[28] Nomad by HashiCorp, “Nomad by HashiCorp,” 2019.

https://www.nomadproject.io/use-cases/automated-service-networking-with-consul

(accessed Oct. 29, 2020).

[29] Docker Inc., “Use Host networking - Docker Documentation,” 2019.

 85

https://docs.docker.com/network/host/ (accessed Oct. 29, 2020).

[30] “MacVTap - Linux Virtualization Wiki,” Dec. 30, 2017.

https://virt.kernelnewbies.org/MacVTap (accessed Oct. 29, 2020).

[31] “keepalived.conf(5) — keepalived — Debian unstable — Debian Manpages.”

https://manpages.debian.org/unstable/keepalived/keepalived.conf.5.en.html

(accessed Nov. 04, 2020).

[32] “Introduction to Linux interfaces for virtual networking - Red Hat Developer.”

https://developers.redhat.com/blog/2018/10/22/introduction-to-linux-interfaces-

for-virtual-networking/ (accessed Nov. 04, 2020).

[33] “Live migration - CRIU,” criu.org, Jan. 13, 2019. https://criu.org/Live_migration

(accessed Oct. 28, 2020).

[34] “Exporters and integrations | Prometheus,” Prometheus.

https://prometheus.io/docs/instrumenting/exporters/ (accessed Oct. 28, 2020).

[35] “Overview - Vector,” Vector. https://getvector.io/docs/ (accessed Oct. 28, 2020).

[36] Prometheus Authors 2014-2020, “Grafana | Prometheus,” Prometheus.

https://prometheus.io/docs/visualization/grafana/ (accessed Oct. 28, 2020).

[37] “Performance Co-Pilot Grafana Plugin — grafana-pcp 3.0.0-beta2

documentation,” Grafana. https://grafana-pcp.readthedocs.io/en/latest/index.html

(accessed Oct. 28, 2020).

[38] “Performance Co-Pilot.” https://pcp.io/docs/guide.html (accessed Nov. 04, 2020).

[39] “Performance Co-Pilot.” https://pcp.io/man/man3/pmda.3.html (accessed Nov. 04,

2020).

[40] “Docker - Cannot remove dead container - Stack Overflow.”

https://stackoverflow.com/questions/30794108/docker-cannot-remove-dead-

container (accessed Nov. 04, 2020).

[41] “Use the OverlayFS storage driver | Docker Documentation.”

https://docs.docker.com/storage/storagedriver/overlayfs-driver/ (accessed Nov. 04,

2020).

[42] “Last Will and Testament - MQTT Essentials: Part 9.”

https://www.hivemq.com/blog/mqtt-essentials-part-9-last-will-and-testament/

(accessed Nov. 04, 2020).

[43] R. Light, “MQTT | Eclipse Mosquitto,” Mosquitto.

https://mosquitto.org/man/mqtt-7.html (accessed Oct. 28, 2020).

[44] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in

Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Aug. 2016, vol. 13-17-August-2016, pp. 785–794,

doi: 10.1145/2939672.2939785.

[45] “What is the difference between Bagging and Boosting? | Quantdare.”

https://quantdare.com/what-is-the-difference-between-bagging-and-boosting/

(accessed Nov. 04, 2020).

[46] “TPC-C Overview.” http://www.tpc.org/tpcc/detail5.asp (accessed Nov. 04, 2020).

APPENDIX I – HERD MONITOR PSEUDOCODE

Daemon thread pseudocode

Metrics Processor thread pseudocode

Host Monitor thread pseudocode

get cli parameters
set sampling rate
set monitoring timestamp
get hostlist
build cvs list, initiate logs

instantiate globally shared objects (multi host)

start MsgQueue thread

for each host in hostlist do
 instantiate shared objects (same host)

 create pcp context for host

 start Host Monitoring Thread
 start Container Monitoring Thread
 start Migration Tracking Thread
 start Remote Logger Thread

done

get metric configurations from config file
compute time delta from previous run

for each metric in config file do:

 get datatype
 get operations to apply to current metric
 for each operation do:
 apply operation based on datatype and time delta
 clean output
 store to metric list
 done
done

return metric list

every samplerate seconds do

 from hostconfig generate pcp metric to request string
 get pcp context for current host
 poll pmwebd server with request string

 parse response to json
 for every received metric do
 get metric name
 for every instance in metric
 get instance to measure id from hostconfig
 add correct instance value and name to metric list
 done
 done

 process metric list with Metric Processor
 write processed metrics to cvs
 publish processed metrics to mqtt
done

 87

Migration Tracker thread pseudocode

Container Monitor thread pseudocode

every trackingSamplerate seconds run:

 get pcp context for current host
 poll pmwebd server for all container names and their id
 poll pmwebd server for active cgroups ids

 filter all containers names by active cgroups ids
 generate active container list and compare with previous run

 compute removed containers and add them to action queue
 compute added containers and add them to action queue

 write migration metric to cvs
 publish migration metric to mqtt

done

every samplerate seconds run:

 build active container list from container action queue

 for every active container do

 from containerconfig generate pcp metric to request string
 get pcp context for current host
 poll pmwebd server with request string

 parse response to json
 for every received metric do
 get metric name
 for every instance in metric
 get instance-to-measure id from containerconfig
 add correct instance value and name to metric list
 done
 done

 process metric list with Metric Processor
 write processed metrics to cvs
 publish processed metrics to mqtt

 done
done

 88

APPENDIX II – HERD MONITOR TECHNICAL CHALLENGES

The main feature of Herd Monitor, that differentiates it from other container monitoring

tools, is its ability to handle containers live migrating and its resource metrics. During the

development of the Migration Tracking features we encountered problems with the way

Docker and PCP handled CGROUPs.

Migration tracking errors were rare but its symptoms became apparent on the

desynchronization of the added/removed containers per-host queues used by the

Monitoring thread generated by the Tracking thread. Desynchronization in this case means

the removal of a (marked-as) non-existing container or the addition of an (marked-as)

existing container. Although monitoring errors can be somewhat tolerated, on long

scenarios, this is an issue. Queue desynchronization was evidently the symptom, finding

out the source of the problem was not easy. A concurrency issue was ruled out as the queues

are thread-safe and concurrency was already exhaustively tested. An inter-host race

condition (eg. adding a container to another host before removing it from the previous host)

was ruled out, as an active container is marked as such, only when it’s "running" and

migration stops the container. Herd Compute makes sure an instance of a container is only

running in one host even in the case of a rollback. The severity of the problem was apparent

when the system was tested on a new host, as the errors became constant. Fixing the

problem required an exhaustive test of all possible tracking errors.

A bug in Docker[40], where a container wasn't reported by Docker and could not be

removed but was present on the PCP CGROUP metrics, created a tracking mismatch

(CGROUP vs container names) on a Compute Hosts. The initial Migration Tracking code

was written in a way that once the invisible containers where removed the Tracking broke.

To remove those container a AUFS Docker filesystem reset was made and the system was

set to use Overlay2[41] filesystem.

 89

Fixing the error required not only fixing the original bug (tracking mismatch) but also a

complete rewrite of the main function of the Tracking thread by filtering all instances of

containers by their status. The problem was complex as the point of the Tracking thread is

to concurrently keep track of container migration count and monitoring (to improve

performance) by finding out, inter-host, not only added/removed containers but also re-

added containers. As a result, system performance was not be negatively affected, but

rather improved. In the case of error, a correctly synchronized tracking no longer yielded

monitoring for non-existing containers, which caused overhead on the Compute hosts and

errors in Herd Monitor.

 90

APPENDIX III - TESTS LIST

Herd Experiment Log

Folder Data/

01 pong-random migrations mixed workload tests, and monitoring tests

init herdmon tests

correlation chart

02-04 pong-controlled migrations mixed workload tests, and monitoring tests

05-07 scenario 09, pong-controlled migrations mixed workload tests, and monitoring tests

08-09 scenario 10, pong-controlled migrations mixed workload tests, and monitoring tests

10 scenario 11, pong-controlled migrations mixed workload tests, and monitoring tests

11 scenario 12, pong-controlled migrations cpu workload tests, and monitoring tests, Sampling

Rate comparison

12 scenario 11, pong-controlled migrations mixed workload tests, and monitoring tests, G750JX

meta-host

13 Scenario 13 - baseline for null metrics, set 0 value on null metrics

14 Scenario 13 - baseline for null metrics, drop metric on null metrics

15-17 Scenario 11, pong-controlled migrations mixed workload tests, and monitoring tests after

null metric change

18 Scenario 14 - stress test, container eol test

19 Scenario 15 - Long Scenario 11 3x time, same delays

20 Scenario 16 - Long Scenario 11 3x time, 3x delays

21-22 Scenario 15-2 - Long Scenario 11 3x time, same delays

----Herdmon metric processing and sampling tests completed

23-25,27-30 Scenario 17 - first staircase cpu

26 Scenario 18 - mixed workload basedline test

26 - Scenario 18 - workload baseline test

29,28 - Scenario 17-4 - long baseline CPU test 4

22,20 - Scenario 16 - Long Scenario 11 3x time, 3x delays

30-33 Scenario 20 long baseline staircase I/O test

34 - Scenario 20-4 - long baseline I/O test 4

35-37 Scenario 21-1 long baseline test for 2x 4-core 2x 2-core cpu test

38,39,40 vs 41-4 - Scenario 21-2 - MigrationMetrics Overhead reduction comparison

36 vs 41-4 - Scenario 21-2 - Overhead reduction comparison

42-2 vs 42-4 PCP deployment model comparison

39 vs 41-4 for preliminary and 42-4 for final comparison of optimizations

44 Scenario 20-4 Container/Host IO utilization study after updates and on a homogeneous CPU-count

VM setup, discarded

45 Scenario 20-4 Container/Host IO utilization study after updates and on a heterogeneous CPU-

count VM setup, discarded

43, 47 for stress testing for concurrency management changes

 91

41-49 for concurrency management tests

50,51-58 for IO study

60 for cpu with stress-ng

60-4 for Tracking Thread rewrite write-up

62 Scenario 24-3 - Long baseline test for 4x 256M non-sustained memory containers - stress-ng

63 Scenario 24-4 - Long baseline test for 8x non-sustained 512M memory containers - stress-ng

64 Scenario 25-2 - Short baseline test for 4x CPU containers - stress-ng, migration tracking

tests with migration stress test

64/06 first mqtt streaming test

----Herdmon overhead optimizations completed

59,61 for ram study

s24

pong-based migrations

base metrics, no ops

65 - cpu tests, 1-2 thread count, base metrics

control host not in meta host

pong-based migrations

65/01 cfs conclusions

65/02 first forecast test?

65/03 - cpu tests, 1-2 thread count, extended metrics, init extra metrics and ops

pong-based migrations

for openstack in dcp1, dcp2 and cluster

forecasting test

resmapling test

classification test? pids vs threads

66 migration duration data to compute avg and distribution

67 first ops test

67/05 Scenario 28-2 - long ops log test for 4 single thread cpu containers - cpu staircase

67/06 Scenario 28-2 - long ops log test for 4 single thread cpu containers - sysbench. With

mosquitto_sub log - cpu staircase

68 - cpu tests

pong-based migrations

resampling tests

69 - mem tests, 1 thread count, base metrics, psi and ops

s30-1

pong-based migrations

resampling tests

70 - mem test

pong-based migrations

71 - cpu tests, 1 thread count, base metrics

First openstack meta-host

resampling tests

72 - cpu tests, 1 thread count, base metrics, ops

herdControl tests, init algo tests

for openstack

73 - cpu tests, 1 thread count, base and extended metrics, ops

algo 1-3 tests

for openstack

algo comparisons

 92

74 - cpu tests, 1-2 thread count, extended metrics and ops

algo 1-3 tests

for openstack in dcp1, dcp2 and cluster

algo comparisions

75 - cpu tests, random thread count, extended metrics, extra metrics and ops

for openstack in dcp1, dcp2 and cluster

76 - stress-ng mem tests, 1 thread count, extended metrics, extra metrics, no ops

for openstack in dcp2 running on herd-1G-1 to 4

77 - mem tests, random thread count, extended metrics, extra metrics and ops

for openstack in dcp1, dcp2, cluster and dcp2 running on herd-1G-1 to 4

78 - migration stress testing after herd compute changes (network, difflayer, compression,

logging, extended metrics)

comparing sync'd criu resource vs not sync'd

----Herdmon extended metrics (PSI), extra metrics(PID), container ops and logs (from herdCompute)

completed

Folder OLTP/

TPCC 11/1 - DCP2 idle test

 11/2-11/3 Multi server oltp scenario test

 11/4-11/5 60 min Multi server oltp scenario same node

 11/5 oltp_11 base test

 11/6-7 60 min Multi server oltp scenario 6 nodes

 11/8-10 init herd control test

 11/11-12 algoTwo test

 11/13-14 algoSix test

 11/15-16 algoSix long test (oltp_11)

 11/17-19 algoSix short test (oltp_11-b)

 11/20 algoSix long test (oltp-11) after updates

 11/21 algoSeven short test (oltp-11-b) not final algoSeven

 11/22-25 algoSeven long test (oltp-11) after run of OLTP 13/12

 11/26-28 algoSeven oltp-11-d

 11/29 algoSeven oltp-11-e

 11/30 algoSeven oltp-11-f 5 WARE

 11/31 algoSeven oltp-11-f 5 WARE perfect run

 11/32 algoSeven oltp-11-g 5 WARE 15 TERM perfect run

 #disk limited (8 cores)

 11/33 oltp-11-e_2 10 WARE 10 TERM 2 clients 5 WARE each algoSeven

 11/34 oltp-11-e_2 10 WARE 10 TERM 2 clients 5 WARE base test

 #vm core count comparison

 11/35 oltp-11-h 10 WARE 10 TERM 2 clients 5 WARE staircase base test for oltp-11-e_2

8 cores each vm

 11/36 oltp-11-i 10 WARE 10 TERM 2 clients 5 WARE oltp-11-h but with 2 cores

each vm

 #10 min test

 11/37 oltp-11-e_3 10 WARE 10 TERM 2 clients 5 WARE base test 2 cores each vm

 11/38 oltp-11-e_3 10 WARE 10 TERM 2 clients 5 WARE base test 2 cores each vm with algoSeven

---> #tpcc with oltp policy: algoSeven perfect

 11/39 oltp-11-e_4 10 WARE 10 TERM 2 clients 5 WARE base test 2 cores each vm 60min with

algoSeven

 11/40 oltp-11-e_4 10 WARE 10 TERM 2 clients 5 WARE base test 2 cores each vm 60min

 #vm core count comparison

 11/41 oltp-11-e_5 10 WARE 10 TERM 2 clients 5 WARE base test 4 cores each vm 60min

 11/42 oltp-11-e_5 10 WARE 10 TERM 2 clients 5 WARE base test 4 cores each vm 60min with

algoSeven

 93

 11/43 oltp-11-e_5 10 WARE 10 TERM 2 clients 5 WARE base test 4 cores each vm 60min with

algoSeven second run

 #vm core count comparison

 11/44 oltp-11-e_6 10 WARE 10 TERM 2 clients 5 WARE base test 5 cores each vm 60min

 11/45 oltp-11-e_6 10 WARE 10 TERM 2 clients 5 WARE base test 5 cores each vm 60min second

run

 11/46 oltp-11-e_6 10 WARE 10 TERM 2 clients 5 WARE base test 5 cores each vm 60min with

algoSeven - failed

 11/47 oltp-11-e_6 10 WARE 10 TERM 2 clients 5 WARE base test 5 cores each vm 60min with

algoSeven

 11/48 oltp-11-e_7 10 WARE 10 TERM 2 clients 5 WARE base test 6 cores each vm 60min

 11/49 oltp-11-e_7 10 WARE 10 TERM 2 clients 5 WARE base test 6 cores each vm 60min with

algoSeven - failed

 11/50 oltp-11-e_7 10 WARE 10 TERM 2 clients 5 WARE base test 6 cores each vm 60min with

algoSeven - failed

 11/51 oltp-11-e_7 10 WARE 10 TERM 2 clients 5 WARE base test 6 cores each vm 60min with

algoSeven

 11/ 34,40,41,45,48 tpcc cpu count effect

 #15GB InnoDB

 14/01 10 TERM 8 cores 1-5 WARE

 14/02 10 TERM 8 cores 10 WARE

 14/03 10 TERM 8 cores 20 WARE

 14/04 10 TERM 8 cores 30 WARE

 14/05 10 TERM 8 cores 40 WARE

 14/06 10 TERM 8 cores 50 WARE

 14/07 10 TERM 8 cores 60 WARE

 14/08 10 TERM 8 cores 70 WARE fail

 14/09 10 TERM 8 cores 65 WARE <--- limit

 14/100 10 TERM 8 cores 100 WARE fail

 15/ oltp-11-e_4 10x base 2 cores

 16/ oltp-11-e_4 10x algoSeven 2 cores

 17/ oltp-11-e_4 10x base 4 cores

 17/02+ mosquitto persistence disabled

 18/ oltp-11-e_4 10x algoSeven 4 cores

OLTP 12/01 init sysbench oltp 1M-10T-T4 test (oltp_13)

12/02 init sysbench oltp 1M-10T-T100 test (oltp_13)

13/09 algoSeven (oltp_13-c) perfect results

13/10-11 oltp_15 tests, 6x sysbench, like oltp_11

13/12-13 oltp_15 tests, 6x sysbench, like oltp_11 with meta-host monitoring

13/12 oltp_15 perfect results

13/14 oltp_15-b tests, longer oltp_15, with meta-host monitoring

13/15 oltp_16, based on oltp_15 with 20 tables and 50 threads

Folder Data/

79+ herdmon baseline tests

self host, not meta, no containers 5 sec, 10 sec, 2 sec

oltp 10min 2 sec 10 sec 30 sec

oltp 60min 2 sec 10 sec 30 sec

distribution comparison, statistical moments

overhead/scaling comparison

79 herdmon baseline tests - 5s mon, 1s track, no containers, no meta-host

 94 herdmon baseline tests - 5s mon, 2s track, no containers, no meta-host

80 herdmon baseline tests - 1s mon, 1s track, no containers, no meta-host

81 herdmon baseline tests - 10s mon, 5s track, no containers, no meta-host boxplot

82 herdmon baseline tests - 30s mon, 15s track, no containers, no meta-host too high? redo

 93 herdmon baseline tests - 30s mon, 15s track, no containers, no meta-host, 4/8 cores, 16GB

ram, 60 sec polltimeout

83 herdmon scaling tests - 450/600 containers 1GB jvm, failed

 94

84 herdmon scaling tests - 450/600 containers 4GB jvm - herdmon and pcp overhad box plots,

no ops

85 herdmon scaling tests - 450/600 containers 1GB jvm - herdmon and pcp overhad box plots,

cpu ops

86 herdmon scaling tests - 450/600 containers 4GB jvm - cpu ops

87 herdmon scaling tests - 600/600 containers 4GB jvm - no ops, 16GB herd-control

88 herdmon scaling tests - 600/600 containers 4GB jvm - cpu ops, 16GB herd-control

89 herdmon scaling tests - 1800 containers 8GB jvm - no ops, 16GB herd-control

90 herdmon scaling tests - 1800 containers 8GB jvm - cpu ops, 16GB herd-control

91 herdmon scaling tests - 2700/3600 containers 16GB jvm - no ops, 16GB herd-control

 95 herdmon scaling tests - 2800/3600 containers 16GB jvm - no ops, 16GB herd-control, 60 sec

polltimeout - kernel.all.pswitch vs network.interface.total.bytes?

92 herdmon scaling tests - 2700/3600 containers 16GB jvm - cpu ops, 16GB herd-control

96 herdmon scaling tests - 2800/3600 containers 16GB jvm - cpu ops, 16GB herd-control, 60

sec polltimeout

We developed more than 400 Jupyter notebooks for analysis, generated more than 19

thousand CSV data files, conducted more than 100 types of experiments and generated

more than 1.2GB of resource utilization data.

